Polynomiality of orbifold Hurwitz numbers, spectral curve, and a new proof of the Johnson–Pandharipande–Tseng formula

In this paper, we present an example of a derivation of an ELSV-type formula using the methods of topological recursion. Namely, for orbifold Hurwitz numbers we give a new proof of the spectral curve topological recursion, in the sense of Chekhov, Eynard and Orantin, where the main new step compared to the existing proofs is a direct combinatorial proof of their quasi-polynomiality. Spectral curve topological recursion leads to a formula for the orbifold Hurwitz numbers in terms of the intersection theory of the moduli space of curves, which, in this case, appears to coincide with a special case of the Johnson-Pandharipande-Tseng formula

[1]  P. Johnson Double Hurwitz numbers via the infinite wedge , 2010, 1008.3266.

[2]  G. Borot Blobbed topological recursion , 2015 .

[3]  Paul T. Norbury,et al.  Orbifold Hurwitz numbers and Eynard-Orantin invariants , 2012, 1212.6850.

[4]  B. Eynard,et al.  Abstract loop equations, topological recursion, and applications , 2013, 1303.5808.

[5]  S. Shadrin,et al.  Blobbed topological recursion: properties and applications , 2015, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  P. Dunin-Barkowski,et al.  Identification of the Givental Formula with the Spectral Curve Topological Recursion Procedure , 2012, 1211.4021.

[7]  A. Okounkov,et al.  The Equivariant Gromov-Witten theory of P**1 , 2002, math/0207233.

[8]  A. Vainshtein,et al.  Hurwitz numbers and intersections on moduli spaces of curves , 2000, math/0004096.

[9]  A. Okounkov Toda equations for Hurwitz numbers , 2000, math/0004128.

[11]  B. Eynard A short overview of the "Topological recursion" , 2014, 1412.3286.

[12]  D. Zvonkine,et al.  Chiodo formulas for the r-th roots and topological recursion , 2015, 1504.07439.

[13]  V. Bouchard,et al.  Mirror symmetry for orbifold Hurwitz numbers , 2013, 1301.4871.

[14]  D. Zvonkine,et al.  Equivalence of ELSV and Bouchard–Mariño conjectures for $$r$$r-spin Hurwitz numbers , 2013, 1306.6226.

[15]  Paul Johnson Equivariant Gromov-Witten theory of one dimensional stacks , 2009, 0903.1068.

[16]  M. Reid,et al.  Solitons : differential equations, symmetries and infinite dimensional algebras , 2000 .

[17]  Michio Jimbo,et al.  Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras , 2000 .

[18]  R. Pandharipande,et al.  Abelian Hurwitz-Hodge integrals , 2008, 0803.0499.

[19]  B. Eynard,et al.  Invariants of algebraic curves and topological expansion , 2007, math-ph/0702045.

[20]  P. Dunin-Barkowski,et al.  Polynomiality of Hurwitz numbers, Bouchard-Marino conjecture, and a new proof of the ELSV formula , 2013, 1307.4729.

[21]  B. Eynard Invariants of spectral curves and intersection theory of moduli spaces of complex curves , 2011, 1110.2949.