Peptide‐based imaging agents for cancer detection

Abstract Selective receptor‐targeting peptide based agents have attracted considerable attention in molecular imaging of tumor cells that overexpress corresponding peptide receptors due to their unique properties such as rapid clearance from circulation as well as high affinities and specificities for their targets. The rapid growth of chemistry modification techniques has enabled the design and development of various peptide‐based imaging agents with enhanced metabolic stability, favorable pharmacokinetics, improved binding affinity and selectivity, better imaging ability as well as biosafety. Among them, many radiolabeled peptides have already been translated into the clinic with impressive diagnostic accuracy and sensitivity. This review summarizes the current status in the development of peptide‐based imaging agents with an emphasis on the consideration of probe design including the identification of suitable peptides, the chemical modification of probes and the criteria for clinical translation. Specific examples in clinical trials have been provided as well with respect to their diagnostic capability compared with other FDA approved imaging agents. Graphical abstract Figure. No Caption available.

[1]  J. Blum,et al.  A multicenter trial with a somatostatin analog (99m)Tc depreotide in the evaluation of solitary pulmonary nodules. , 2000, Chest.

[2]  Shimon Weiss,et al.  Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. , 2004, Journal of the American Chemical Society.

[3]  R. Jensen,et al.  Bombesin receptor-mediated imaging and cytotoxicity: review and current status. , 2011, Current drug delivery.

[4]  M. Pierschbacher,et al.  Concept and progress in the development of RGD‐containing peptide pharmaceuticals , 1995, Biopolymers.

[5]  E Ruoslahti,et al.  RGD and other recognition sequences for integrins. , 1996, Annual review of cell and developmental biology.

[6]  P. Verhaert,et al.  The emergence of peptides in the pharmaceutical business: From exploration to exploitation , 2014 .

[7]  M. Tweedle Peptide-targeted diagnostics and radiotherapeutics. , 2009, Accounts of chemical research.

[8]  Martin Gotthardt,et al.  [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[9]  Quanzheng Li,et al.  Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe , 2012, Theranostics.

[10]  K. Sodhi,et al.  68Ga-DOTATATE positron emission tomography/computed tomography scan in the detection of bone metastases in pediatric neuroendocrine tumors , 2014, Indian journal of nuclear medicine : IJNM : the official journal of the Society of Nuclear Medicine, India.

[11]  Xiang-yi Ma,et al.  Evaluation of (99m)Tc-HYNIC-TMTP1 as a tumor-homing imaging agent targeting metastasis with SPECT. , 2015, Nuclear medicine and biology.

[12]  S. Mather,et al.  Conjugation of DOTA-like chelating agents to peptides and radiolabeling with trivalent metallic isotopes , 2006, Nature Protocols.

[13]  A. Hubalewska-Dydejczyk,et al.  GLP-1 and exendin-4 for imaging endocrine pancreas. A review. Labelled glucagon-like peptide-1 analogues: past, present and future. , 2015, The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of....

[14]  A. Epenetos,et al.  Imaging of metastatic melanoma utilising a technetium-99m labelled RGD-containing synthetic peptide , 1998, European Journal of Nuclear Medicine.

[15]  S. Gambhir,et al.  microPET imaging of glioma integrin {alpha}v{beta}3 expression using (64)Cu-labeled tetrameric RGD peptide. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[16]  C. Van de Wiele,et al.  Nuclear imaging of prostate cancer with gastrin-releasing-peptide-receptor targeted radiopharmaceuticals. , 2008, Current pharmaceutical design.

[17]  R. Baum,et al.  Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[18]  Xiaoyuan Chen,et al.  (18)F, (64)Cu, and (68)Ga labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer. , 2009, Bioconjugate chemistry.

[19]  S. Gambhir,et al.  Molecular imaging in living subjects: seeing fundamental biological processes in a new light. , 2003, Genes & development.

[20]  Xiaoyuan Chen,et al.  Pilot Prospective Evaluation of 18F-Alfatide II for Detection of Skeletal Metastases , 2015, Theranostics.

[21]  J. Pablo,et al.  Thermodynamic Stability of β-Peptide Helices and the Role of Cyclic Residues , 2006 .

[22]  Sanjiv S Gambhir,et al.  Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. , 2006, Nano letters.

[23]  Seulki Lee,et al.  Peptides and peptide hormones for molecular imaging and disease diagnosis. , 2010, Chemical reviews.

[24]  T. Siahaan,et al.  The effect of conformation on the solution stability of linear vs. cyclic RGD peptides. , 1999, The journal of peptide research : official journal of the American Peptide Society.

[25]  H. Maecke Radiolabeled peptides in nuclear oncology: influence of peptide structure and labeling strategy on pharmacology. , 2005, Ernst Schering Research Foundation workshop.

[26]  Mithat Gönen,et al.  Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe , 2014, Science Translational Medicine.

[27]  Judit Erchegyi,et al.  Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors , 2006, Proceedings of the National Academy of Sciences.

[28]  S. Deutscher Phage display in molecular imaging and diagnosis of cancer. , 2010, Chemical reviews.

[29]  D. Pan,et al.  Imaging Integrin αvβ3 and NRP-1 Positive Gliomas with a Novel Fluorine-18 Labeled RGD-ATWLPPR Heterodimeric Peptide Probe , 2014, Molecular Imaging and Biology.

[30]  R. Chen,et al.  TMTP1, a Novel Tumor-Homing Peptide Specifically Targeting Metastasis , 2008, Clinical Cancer Research.

[31]  P. Conti,et al.  RGD-based PET tracers for imaging receptor integrin αv β3 expression. , 2013, Journal of labelled compounds & radiopharmaceuticals.

[32]  Otto C. Boerman,et al.  Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptor-expressing tumors , 2010, Amino Acids.

[33]  K. Tatemoto,et al.  Neuropeptide Y: History and Overview , 2004 .

[34]  M. Reiser,et al.  Comparison of abdominal MRI with diffusion-weighted imaging to 68Ga-DOTATATE PET/CT in detection of neuroendocrine tumors of the pancreas , 2013, European Journal of Nuclear Medicine and Molecular Imaging.

[35]  P. Workman,et al.  Discovery of small molecule cancer drugs: Successes, challenges and opportunities , 2012, Molecular oncology.

[36]  Sanjiv S Gambhir,et al.  A molecular imaging primer: modalities, imaging agents, and applications. , 2012, Physiological reviews.

[37]  Stephen D. A. Hupp,et al.  History and Overview , 2010 .

[38]  Zhongchan Sun,et al.  Comparison of Three Dimeric 18F-AlF-NOTA-RGD Tracers , 2014, Molecular Imaging and Biology.

[39]  S. Gambhir,et al.  microPET Imaging of Glioma Integrin αvβ3 Expression Using 64Cu-Labeled Tetrameric RGD Peptide , 2005 .

[40]  H. Wester,et al.  Molecular imaging targeting peptide receptors. , 2009, Methods.

[41]  S. Schulz,et al.  Indium-111-pentetreotide scintigraphy and somatostatin receptor subtype 2 expression: new prognostic factors for malignant well-differentiated endocrine tumors. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[42]  U. Knigge,et al.  PET tracers for somatostatin receptor imaging of neuroendocrine tumors: current status and review of the literature. , 2014, Future oncology.

[43]  Q. Xie,et al.  First Experience of 18F-Alfatide in Lung Cancer Patients Using a New Lyophilized Kit for Rapid Radiofluorination , 2013, The Journal of Nuclear Medicine.

[44]  Filip Bergquist,et al.  The Glucagon-Like Peptide 1 (GLP-1) Analogue, Exendin-4, Decreases the Rewarding Value of Food: A New Role for Mesolimbic GLP-1 Receptors , 2012, The Journal of Neuroscience.

[45]  William J. Dower,et al.  Toward cell–targeting gene therapy vectors: Selection of cell–binding peptides from random peptide–presenting phage libraries , 1996, Nature Medicine.

[46]  J Engel,et al.  Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V beta 3, and alpha 5 beta 1 integrins. , 1994, The Journal of biological chemistry.

[47]  H. Kessler,et al.  Ligands for mapping alphavbeta3-integrin expression in vivo. , 2009, Accounts of chemical research.

[48]  Chor Yong Tay,et al.  Understanding and exploiting nanoparticles' intimacy with the blood vessel and blood. , 2015, Chemical Society reviews.

[49]  Seulki Lee,et al.  Peptide-based probes for targeted molecular imaging. , 2010, Biochemistry.

[50]  E. Richelson,et al.  Neurotensin: peptide for the next millennium , 2000, Regulatory Peptides.

[51]  Yanglong Hou,et al.  Multifunctional Nanoparticles for Multimodal Molecular Imaging , 2011 .

[52]  Anastasia Nikolopoulou,et al.  Bombesin Receptor Antagonists May Be Preferable to Agonists for Tumor Targeting , 2008, Journal of Nuclear Medicine.

[53]  Xiaoyuan Chen,et al.  Chemical Conjugation of Evans Blue Derivative: A Strategy to Develop Long-Acting Therapeutics through Albumin Binding , 2016, Theranostics.

[54]  Xiaoyuan Chen,et al.  Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. , 2016, Chemical Society reviews.

[55]  J. Reubi,et al.  Somatostatin Receptors as Targets for Nuclear Medicine Imaging and Radionuclide Treatment , 2011, The Journal of Nuclear Medicine.

[56]  R Weissleder,et al.  Molecular imaging. , 2009, Radiology.

[57]  D. Grainger,et al.  Imaging Surface Immobilization Chemistry: Correlation with Cell Patterning on Non‐Adhesive Hydrogel Thin Films , 2008, Advanced functional materials.

[58]  A. Mojtahedi,et al.  The value of (68)Ga-DOTATATE PET/CT in diagnosis and management of neuroendocrine tumors compared to current FDA approved imaging modalities: a review of literature. , 2014, American journal of nuclear medicine and molecular imaging.

[59]  Z. Win,et al.  The possible role of 68Ga-DOTATATE PET in malignant abdominal paraganglioma , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[60]  J. Heath,et al.  Design and Optimization of Coin-Shaped Microreactor Chips for PET Radiopharmaceutical Synthesis , 2010, Journal of Nuclear Medicine.

[61]  Marion de Jong,et al.  Tumor Imaging and Therapy Using Radiolabeled Somatostatin Analogues , 2009 .

[62]  David J. Robertson,et al.  Nanoparticles and phage display selected peptides for imaging and therapy of cancer. , 2013, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[63]  Fan Wang,et al.  68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin αvβ3 PET imaging , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[64]  G. Byk,et al.  Backbone cyclization: A new method for conferring conformational constraint on peptides , 1991, Biopolymers.

[65]  W Cai,et al.  Molecular imaging with nucleic acid aptamers. , 2011, Current medicinal chemistry.

[66]  Sanjiv S. Gambhir,et al.  Near-Infrared Fluorescent RGD Peptides for Optical Imaging of Integrin αvβ3 Expression in Living Mice , 2005 .

[67]  L. Gentilucci,et al.  Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. , 2010, Current pharmaceutical design.

[68]  R. Gillies,et al.  Heterobivalent ligands crosslink multiple cell-surface receptors: the human melanocortin-4 and delta-opioid receptors. , 2008, Angewandte Chemie.

[69]  N. Erathodiyil,et al.  Functionalization of inorganic nanoparticles for bioimaging applications. , 2011, Accounts of chemical research.

[70]  Young-Seung Kim,et al.  Improving tumor uptake and pharmacokinetics of (64)Cu-labeled cyclic RGD peptide dimers with Gly(3) and PEG(4) linkers. , 2009, Bioconjugate chemistry.

[71]  Wei Chen,et al.  Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. , 2015, Chemical Society reviews.

[72]  Xiaoyuan Chen,et al.  Design and development of molecular imaging probes. , 2010, Current topics in medicinal chemistry.

[73]  B. Tang,et al.  Vasoactive intestinal peptide receptor-based imaging and treatment of tumors (Review). , 2014, International journal of oncology.

[74]  R. Jensen,et al.  Development of Simplified Vasoactive Intestinal Peptide Analogs with Receptor Selectivity and Stability for Human Vasoactive Intestinal Peptide/Pituitary Adenylate Cyclase-Activating Polypeptide Receptors , 2005, Journal of Pharmacology and Experimental Therapeutics.

[75]  Raffaele Pezzilli,et al.  Standardized Uptake Values of 68Ga-DOTANOC PET: A Promising Prognostic Tool in Neuroendocrine Tumors , 2010, Journal of Nuclear Medicine.

[76]  Shuming Nie,et al.  Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. , 2006, Nanomedicine.

[77]  Young Keun Kim,et al.  A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. , 2011, Nature nanotechnology.

[78]  Bing Wang,et al.  Metabolism of nanomaterials in vivo: blood circulation and organ clearance. , 2013, Accounts of chemical research.

[79]  Yubin Miao,et al.  Alpha-melanocyte stimulating hormone peptide-targeted melanoma imaging. , 2007, Frontiers in bioscience : a journal and virtual library.

[80]  X. Zhang,et al.  Targeted melanoma imaging and therapy with radiolabeled alpha-melanocyte stimulating hormone peptide analogues. , 2010, Giornale italiano di dermatologia e venereologia : organo ufficiale, Societa italiana di dermatologia e sifilografia.

[81]  C. Soto,et al.  Converting a peptide into a drug: strategies to improve stability and bioavailability. , 2002, Current medicinal chemistry.

[82]  G. Loudos,et al.  [99mTc]Demotate, a new 99mTc-based [Tyr3]octreotate analogue for the detection of somatostatin receptor-positive tumours: synthesis and preclinical results , 2002, European Journal of Nuclear Medicine and Molecular Imaging.

[83]  H. Kessler,et al.  Radiolabelled RGD peptides for imaging and therapy , 2012, European Journal of Nuclear Medicine and Molecular Imaging.

[84]  R. Bale,et al.  68Ga-DOTA-Tyr3-Octreotide PET in Neuroendocrine Tumors: Comparison with Somatostatin Receptor Scintigraphy and CT , 2007, Journal of Nuclear Medicine.

[85]  H. Ohki‐Hamazaki,et al.  Development and function of bombesin-like peptides and their receptors. , 2005, The International journal of developmental biology.

[86]  M. Galanski,et al.  Neuroendocrine tumour of the mediastinum: fusion of 18F-FDG and 68Ga-DOTATOC PET/CT datasets demonstrates different degrees of differentiation , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[87]  Horst Kessler,et al.  Noninvasive Visualization of the Activated αvβ3 Integrin in Cancer Patients by Positron Emission Tomography and [18F]Galacto-RGD , 2005, PLoS medicine.

[88]  Kyung-Han Lee,et al.  Hybrid PET/optical imaging of integrin αVβ3 receptor expression using a 64Cu-labeled streptavidin/biotin-based dimeric RGD peptide , 2015, EJNMMI Research.

[89]  R. B. Merrifield,et al.  Solid-phase peptide synthesis. , 2006, Advances in enzymology and related areas of molecular biology.

[90]  Igor L. Medintz,et al.  Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis? , 2015, Accounts of chemical research.

[91]  Robert K Prud'homme,et al.  Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy , 2009, Expert opinion on drug delivery.

[92]  H. Maecke,et al.  Radiolabeled Peptides: Valuable Tools for the Detection and Treatment of Cancer , 2012, Theranostics.

[93]  Brian G Trewyn,et al.  Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. , 2007, Nanomedicine.

[94]  B. Keil,et al.  Exendin-4–Based Radiopharmaceuticals for Glucagonlike Peptide-1 Receptor PET/CT and SPECT/CT , 2010, Journal of Nuclear Medicine.

[95]  Hirokazu Tamamura,et al.  Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. , 2005, Blood.

[96]  Fan Wang,et al.  Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. , 2009, Journal of medicinal chemistry.

[97]  L. Iversen Neuropeptides: Regulators of Physiological Processes by Fleur L. Strand, MIT Press, 1999. £45.00, $65.00 (xi + 658 pages) ISBN 0 262 19407 4 , 1999, Trends in Neurosciences.

[98]  R. Gillies,et al.  Solid-Phase Synthesis of Heterobivalent Ligands Targeted to Melanocortin and Cholecystokinin Receptors , 2008, International Journal of Peptide Research and Therapeutics.

[99]  Eun Kyoung Ryu,et al.  18F-Labeled BBN-RGD Heterodimer for Prostate Cancer Imaging , 2008, Journal of Nuclear Medicine.

[100]  K. Brown,et al.  Combinatorial peptide libraries: mining for cell-binding peptides. , 2014, Chemical reviews.

[101]  M. de Jong,et al.  Radiopeptides for Imaging and Therapy: A Radiant Future , 2015, The Journal of Nuclear Medicine.

[102]  Rhona A. Berganos,et al.  Pilot pharmacokinetic and dosimetric studies of (18)F-FPPRGD2: a PET radiopharmaceutical agent for imaging α(v)β(3) integrin levels. , 2011, Radiology.

[103]  M. Schwaiger,et al.  [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. , 2004, Bioconjugate chemistry.

[104]  U. Haberkorn,et al.  PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[105]  M. Sailer,et al.  Neoadjuvant targeting of glioblastoma multiforme with radiolabeled DOTAGA–substance P—results from a phase I study , 2010, Journal of Neuro-Oncology.

[106]  Fan Wang,et al.  An update of radiolabeled bombesin analogs for gastrin-releasing peptide receptor targeting. , 2013, Current pharmaceutical design.

[107]  V. Kundra Prostate cancer imaging. , 2006, Seminars in roentgenology.

[108]  E. P. Krenning,et al.  LOCALISATION OF ENDOCRINE-RELATED TUMOURS WITH RADIOIODINATED ANALOGUE OF SOMATOSTATIN , 1989, The Lancet.

[109]  Matthew G. Vander Heiden,et al.  Metabolic targets for cancer therapy , 2013, Nature Reviews Drug Discovery.

[110]  R. Jensen,et al.  Vasoactive Intestinal Peptide (VIP) and VIP Receptors-Elucidation of Structure and Function for Therapeutic Applications , 2011 .

[111]  M. Bentley,et al.  Chemistry for peptide and protein PEGylation. , 2002, Advanced drug delivery reviews.

[112]  H. Kessler,et al.  Ligands for Mapping a v 3 -Integrin Expression in Vivo , 2009 .

[113]  Erkki Ruoslahti,et al.  Anti-cancer activity of targeted pro-apoptotic peptides , 1999, Nature Medicine.

[114]  C. Böttcher,et al.  Switchable electrostatic interactions between gold nanoparticles and coiled coil peptides direct colloid assembly. , 2009, Organic & biomolecular chemistry.

[115]  L. Wang,et al.  Short chain bombesin pseudopeptides with potent bombesin receptor antagonist activity in rat and guinea pig pancreatic acinar cells. , 1990, European journal of pharmacology.

[116]  Hua Wu,et al.  Clinical Application of Radiolabeled RGD Peptides for PET Imaging of Integrin αvβ3 , 2016, Theranostics.

[117]  L. Andersson,et al.  Large‐Scale Synthesis of Peptides , 2001 .

[118]  M. Schwaiger,et al.  PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labelled, carbohydrated analogue of octreotide , 2002, European Journal of Nuclear Medicine and Molecular Imaging.

[119]  W. Oyen,et al.  Radiolabelled peptides for oncological diagnosis , 2012, European Journal of Nuclear Medicine and Molecular Imaging.

[120]  A. Groves,et al.  Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga‐DOTATATE (DOTA‐DPhe1,Tyr3‐octreotate) and 18F‐FDG , 2008, Cancer.

[121]  Chenjie Xu,et al.  PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)–Conjugated Radiolabeled Iron Oxide Nanoparticles , 2008, Journal of Nuclear Medicine.

[122]  K. Lee,et al.  Effect of D-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. , 1999, Biochemical pharmacology.

[123]  E. Hostetler,et al.  Biodistribution and Radiation Dosimetry of the Integrin Marker 18F-RGD-K5 Determined from Whole-Body PET/CT in Monkeys and Humans , 2012, The Journal of Nuclear Medicine.

[124]  A. Wu,et al.  Neuropeptide Y receptors: a promising target for cancer imaging and therapy , 2015, Regenerative biomaterials.

[125]  Weibo Cai,et al.  Positron emission tomography imaging using radiolabeled inorganic nanomaterials. , 2015, Accounts of chemical research.

[126]  J. Bading,et al.  Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[127]  Toshima Z. Parris,et al.  Transcriptional response in normal mouse tissues after i.v. 211At administration - response related to absorbed dose, dose rate, and time , 2015, EJNMMI Research.

[128]  K. Mukhopadhyay,et al.  Alpha-Melanocyte Stimulating Hormone: An Emerging Anti-Inflammatory Antimicrobial Peptide , 2014, BioMed research international.

[129]  Ido D. Weiss,et al.  PET of Tumor CXCR4 Expression with 4-18F-T140 , 2010, The Journal of Nuclear Medicine.

[130]  Dale O. Kiesewetter,et al.  PET imaging of CXCR4 using copper-64 labeled peptide antagonist , 2011, Theranostics.

[131]  V. Torchilin Recent advances with liposomes as pharmaceutical carriers , 2005, Nature Reviews Drug Discovery.

[132]  A. Groves,et al.  A Comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in Pulmonary Neuroendocrine Tumors , 2008, Journal of Nuclear Medicine.

[133]  M. Langer,et al.  99mTc-labeled neuropeptide Y analogues as potential tumor imaging agents. , 2001, Bioconjugate chemistry.

[134]  J. Reubi,et al.  68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5 , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[135]  R. Weissleder Molecular Imaging in Cancer , 2006, Science.

[136]  Tao Xi,et al.  Studies of poly(ethylene glycol) modification of HM-3 polypeptides. , 2009, Bioconjugate chemistry.

[137]  E. Hindié,et al.  Targeting Neuropeptide Receptors for Cancer Imaging and Therapy: Perspectives with Bombesin, Neurotensin, and Neuropeptide-Y Receptors , 2014, The Journal of Nuclear Medicine.

[138]  G. P. Smith,et al.  Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. , 1985, Science.

[139]  Ashwani Kumar,et al.  Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. , 2011, Food & function.

[140]  Xiaoyuan Chen,et al.  Small-Animal PET of Tumors with 64Cu-Labeled RGD-Bombesin Heterodimer , 2009, Journal of Nuclear Medicine.

[141]  Matthias Glaser,et al.  Phase I Trial of the Positron-Emitting Arg-Gly-Asp (RGD) Peptide Radioligand 18F-AH111585 in Breast Cancer Patients , 2008, Journal of Nuclear Medicine.

[142]  Ick Chan Kwon,et al.  Multifunctional nanoparticles for multimodal imaging and theragnosis. , 2012, Chemical Society reviews.

[143]  Igor L. Medintz,et al.  Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. , 2013, Chemical reviews.

[144]  J. Talbot,et al.  Novel DOTA-neurotensin analogues for 111In scintigraphy and 68Ga PET imaging of neurotensin receptor-positive tumors. , 2011, Bioconjugate chemistry.

[145]  O. Prante,et al.  (18)F-glyco-RGD peptides for PET imaging of integrin expression: efficient radiosynthesis by click chemistry and modulation of biodistribution by glycosylation. , 2014, Molecular pharmaceutics.

[146]  松野 万希子 Role of acetylcholine and gastrin-releasing peptide (GRP) in gastrin secretion , 1998 .

[147]  Peter S. Conti,et al.  Pegylated Arg-Gly-Asp Peptide: 64Cu Labeling and PET Imaging of Brain Tumor αvβ3-Integrin Expression , 2004 .

[148]  Erkki Ruoslahti,et al.  Organ targeting In vivo using phage display peptide libraries , 1996, Nature.

[149]  G. Liang,et al.  Peptide-based nanostructures for cancer diagnosis and therapy. , 2014, Current medicinal chemistry.

[150]  Christian Bruns,et al.  Opportunities in somatostatin research: biological, chemical and therapeutic aspects , 2003, Nature Reviews Drug Discovery.

[151]  W. Oyen,et al.  Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. , 2002, Cancer biotherapy & radiopharmaceuticals.

[152]  R. Riek,et al.  Ring size in octreotide amide modulates differently agonist versus antagonist binding affinity and selectivity. , 2008, Journal of medicinal chemistry.

[153]  D. Cheng,et al.  18F-Radiolabeled GLP-1 analog exendin-4 for PET/CT imaging of insulinoma in small animals , 2013, Nuclear medicine communications.

[154]  P. Espitia,et al.  Bioactive Peptides: Synthesis, Properties, and Applications in the Packaging and Preservation of Food , 2012, Comprehensive reviews in food science and food safety.

[155]  G. de Vincentis,et al.  Gastrin-releasing peptide (GRP) analogues for cancer imaging. , 2004, Cancer biotherapy & radiopharmaceuticals.

[156]  F. Kobarfard,et al.  Synthesis and Preliminary Evaluation of a New 99mTc Labeled Substance P Analogue as a Potential Tumor Imaging Agent , 2015, Iranian journal of pharmaceutical research : IJPR.

[157]  F Dumont,et al.  Biodistribution and dosimetry of (99m)Tc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualization of GRP receptor-expressing malignancies. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[158]  H. Dai,et al.  In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. , 2020, Nature nanotechnology.

[159]  Zeev Rosenzweig,et al.  Synthesis and application of quantum dots FRET-based protease sensors. , 2006, Journal of the American Chemical Society.