Genetically encoded neural activity indicators

[1]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[2]  R. Tsien,et al.  pHTomato: A genetically-encoded indicator that enables multiplex interrogation of synaptic activity , 2012, Nature Neuroscience.

[3]  Hongkui Zeng,et al.  A Cre-Dependent GCaMP3 Reporter Mouse for Neuronal Imaging In Vivo , 2012, The Journal of Neuroscience.

[4]  D. Maclaurin,et al.  Optical recording of action potentials in mammalian neurons using a microbial rhodopsin , 2011, Nature Methods.

[5]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.

[6]  Jinling Lu,et al.  Enhanced dynamic range in a genetically encoded Ca2+ sensor. , 2011, Biochemical and biophysical research communications.

[7]  Andreas T. Schaefer,et al.  Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo , 2011, Nature Neuroscience.

[8]  Roger Y. Tsien,et al.  Concurrent Imaging of Synaptic Vesicle Recycling and Calcium Dynamics , 2011, Front. Mol. Neurosci..

[9]  Adam E. Cohen,et al.  Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein , 2011, Science.

[10]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[11]  M. Wilmanns,et al.  Rapid development of genetically encoded FRET reporters. , 2011, ACS chemical biology.

[12]  Junichi Nakai,et al.  Genetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish , 2011, Proceedings of the National Academy of Sciences.

[13]  Lin Tian,et al.  Imaging Light Responses of Targeted Neuron Populations in the Rodent Retina , 2011, The Journal of Neuroscience.

[14]  D. Kleinfeld,et al.  Characterizing Ligand-Gated Ion Channel Receptors with Genetically Encoded Ca++ Sensors , 2011, PloS one.

[15]  Rafael Yuste,et al.  Imaging Voltage in Neurons , 2011, Neuron.

[16]  Lin Tian,et al.  Functional imaging of hippocampal place cells at cellular resolution during virtual navigation , 2010, Nature Neuroscience.

[17]  Takeharu Nagai,et al.  Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano , 2010, Nature Methods.

[18]  Walther Akemann,et al.  Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins , 2010, Nature Methods.

[19]  Alexander Borst,et al.  Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila , 2010, Nature Neuroscience.

[20]  Baljit S Khakh,et al.  A genetically targeted optical sensor to monitor calcium signals in astrocyte processes , 2010, Nature Neuroscience.

[21]  M. Larkum,et al.  Frontiers in Neural Circuits Neural Circuits Methods Article , 2022 .

[22]  R. Reid,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience Methods Article , 2022 .

[23]  Takeharu Nagai,et al.  Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators. , 2010, ACS chemical biology.

[24]  D. Kleinfeld,et al.  An in vivo biosensor for neurotransmitter release and in situ receptor activity , 2009, Nature Neuroscience.

[25]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[26]  Leon Lagnado,et al.  A genetically-encoded reporter of synaptic activity in vivo , 2009, Nature Methods.

[27]  Bradley J. Baker,et al.  Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  Jasper Akerboom,et al.  Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design , 2009, Journal of Biological Chemistry.

[29]  Qi Wang Structural Basis for Calcium Sensing by GCaMP2 , 2009 .

[30]  O. Garaschuk,et al.  Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes. , 2009, Methods in molecular biology.

[31]  Philipp J. Keller,et al.  Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy , 2008, Science.

[32]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[33]  Yasushi Okamura,et al.  Improving membrane voltage measurements using FRET with new fluorescent proteins , 2008, Nature Methods.

[34]  Walther Akemann,et al.  Engineering of a Genetically Encodable Fluorescent Voltage Sensor Exploiting Fast Ci-VSP Voltage-Sensing Movements , 2008, PloS one.

[35]  R. Tsien,et al.  Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters , 2008, Proceedings of the National Academy of Sciences.

[36]  S. Lukyanov,et al.  Single fluorescent protein-based Ca2+ sensors with increased dynamic range , 2007, BMC biotechnology.

[37]  E. K. Kosmidis,et al.  Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells , 2007, Journal of Neuroscience Methods.

[38]  T. Terwilliger,et al.  Corrigendum: Engineering and characterization of a superfolder green fluorescent protein , 2006, Nature Biotechnology.

[39]  David Baker,et al.  Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. , 2006, Chemistry & biology.

[40]  Guy Salama,et al.  Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  T. Terwilliger,et al.  Engineering and characterization of a superfolder green fluorescent protein , 2006, Nature Biotechnology.

[42]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[43]  Francisco Bezanilla,et al.  A hybrid approach to measuring electrical activity in genetically specified neurons , 2005, Nature Neuroscience.

[44]  M. Ohkura,et al.  Genetically encoded bright Ca2+ probe applicable for dynamic Ca2+ imaging of dendritic spines. , 2005, Analytical chemistry.

[45]  Yasushi Okamura,et al.  Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor , 2005, Nature.

[46]  L. Looger,et al.  Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Tsien Building and breeding molecules to spy on cells and tumors , 2005, FEBS letters.

[48]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Oliver Griesbeck,et al.  Genetically Encoded Indicators of Cellular Calcium Dynamics Based on Troponin C and Green Fluorescent Protein* , 2004, Journal of Biological Chemistry.

[50]  Karel Svoboda,et al.  Circuit Analysis of Experience-Dependent Plasticity in the Developing Rat Barrel Cortex , 2003, Neuron.

[51]  Vincent A Pieribone,et al.  A genetically targetable fluorescent probe of channel gating with rapid kinetics. , 2002, Biophysical journal.

[52]  T. Knöpfel,et al.  Design and characterization of a DNA‐encoded, voltage‐sensitive fluorescent protein , 2001, The European journal of neuroscience.

[53]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[54]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[55]  Ehud Y Isacoff,et al.  A Genetically Encoded Optical Probe of Membrane Voltage , 1997, Neuron.

[56]  A. Persechini,et al.  Novel fluorescent indicator proteins for monitoring free intracellular Ca2+. , 1997, Cell calcium.

[57]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[58]  H. Sullivan Ionic Channels of Excitable Membranes, 2nd Ed. , 1992, Neurology.

[59]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[60]  J. Connor,et al.  Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses , 1991, Nature.

[61]  R. Keynes The ionic channels in excitable membranes. , 1975, Ciba Foundation symposium.

[62]  E. B. Ridgway,et al.  Simultaneous Recording of Membrane Potential, Calcium Transient and Tension in Single Muscle Fibres , 1968, Nature.

[63]  O. Shimomura,et al.  Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. , 1962, Journal of cellular and comparative physiology.