Effective condition number for weighted linear least squares problems and applications to the Trefftz method

Abstract In [27] , the effective condition number Cond_eff is developed for the linear least squares problem. In this paper, we extend the effective condition number for weighted linear least squares problem with both full rank and rank-deficient cases. We apply the effective condition number to the collocation Trefftz method (CTM) [29] for Laplace's equation with a crack singularity, to prove that Cond_eff = O ( L ) and Cond = O ( L 1 / 2 ( 2 ) L ) , where L is the number of singular particular solutions used. The Cond grows exponentially as L increases, but Cond_eff is only O ( L ) . The small effective condition number explains well the high accuracy of the TM solution, but the huge Cond cannot.

[1]  Hua Xiang,et al.  Structured mixed and componentwise condition numbers of some structured matrices , 2007 .

[2]  C.-S. Chien,et al.  Effective condition number for finite difference method , 2007 .

[3]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[4]  Tzon-Tzer Lu,et al.  Highly accurate solutions of Motz's and the cracked beam problems , 2004 .

[5]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[6]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[7]  Owe Axelsson,et al.  On the sublinear and superlinear rate of convergence of conjugate gradient methods , 2000, Numerical Algorithms.

[8]  Ilse C. F. Ipsen,et al.  The Lack of Influence of the Right-Hand Side on the Accuracy of Linear System Solution , 1998, SIAM J. Sci. Comput..

[9]  L. Knöfel,et al.  Oden, J. T. / Reddy, J. N., An Introduction to the Mathematical Theory of Finite Elements. New York‐London‐Sydney‐Toronto. John Wiley & Sons. 1976. XII, 429 S., £ 17.50. $ 32.00 , 1978 .

[10]  C. Loan On the Method of Weighting for Equality Constrained Least Squares Problems , 1984 .

[11]  Yimin Wei,et al.  Condition Numbers for Structured Least Squares Problems , 2006 .

[12]  J. Barlow,et al.  The Direct Solution of Weighted and Equality Constrained Least-Squares Problems , 1988 .

[13]  John R. Rice Matrix Computations and Mathematical Software , 1983 .

[14]  Yimin Wei,et al.  Perturbation Identities for Regularized Tikhonov Inverses and Weighted Pseudoinverses , 2000 .

[15]  A. Cheng,et al.  Trefftz and Collocation Methods , 2008 .

[16]  Alvaro R. De Pierro,et al.  Upper Perturbation Bounds of Weighted Projections, Weighted and Constrained Least Squares Problems , 2000, SIAM J. Matrix Anal. Appl..

[17]  Yimin Wei,et al.  Perturbation bounds for constrained and weighted least squares problems , 2002 .

[18]  Musheng Wei,et al.  Supremum and Stability of Weighted Pseudoinverses and Weighted Least Squares Problems: Analysis and Computations , 2001 .

[19]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[20]  P. Hansen,et al.  The effective condition number applied to error analysis of certain boundary collocation methods , 1994 .

[21]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[22]  Yimin Wei,et al.  On level-2 condition number for the weighted Moore-Penrose inverse , 2008, Comput. Math. Appl..

[23]  Zi-Cai Li,et al.  Effective condition number for numerical partial differential equations , 2008, Numer. Linear Algebra Appl..

[24]  Mårten Gulliksson Backward Error Analysis for the Constrained and Weighted Linear Least Squares Problem When Using the Weighted QR Factorization , 1995, SIAM J. Matrix Anal. Appl..

[25]  O. Axelsson Iterative solution methods , 1995 .

[26]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[27]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[28]  T. Lu,et al.  Stability analysis of Trefftz methods for the stick-slip problem☆ , 2009 .

[29]  A. Cheng,et al.  Trefftz, collocation, and other boundary methods—A comparison , 2007 .

[30]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[31]  Stephen A. Vavasis,et al.  Accurate Solution of Weighted Least Squares by Iterative Methods , 2000, SIAM J. Matrix Anal. Appl..

[32]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[33]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[34]  T. Chan,et al.  Effectively Well-Conditioned Linear Systems , 1988 .

[35]  Zi-Cai Li,et al.  Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities , 1998 .

[36]  A. Laub,et al.  Statistical Condition Estimation for Linear Least Squares , 1998, SIAM J. Matrix Anal. Appl..

[37]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[38]  Rudolf Mathon,et al.  Boundary methods for solving elliptic problems with singularities and interfaces , 1987 .

[39]  Yimin Wei,et al.  On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems , 2006, Math. Comput..

[40]  Gene H. Golub,et al.  Matrix computations , 1983 .

[41]  S. Vavasis Stable Numerical Algorithms for Equilibrium Systems , 1994, SIAM J. Matrix Anal. Appl..

[42]  Stephen A. Vavasis,et al.  Complete Orthogonal Decomposition for Weighted Least Squares , 1995 .

[43]  Mårten Gulliksson Iterative refinement for constrained and weighted linear least squares , 1994 .

[44]  On the modified Gram-Schmidt algorithm for weighted and constrained linear least squares problems , 1995 .

[45]  Owe Axelsson,et al.  Error norm estimation and stopping criteria in preconditioned conjugate gradient iterations , 2001, Numer. Linear Algebra Appl..

[46]  Siegfried M. Rump,et al.  Ill-Conditionedness Need not be Componentwise Near to Ill-Posedness for Least Squares Problems , 1999 .