A method for the experimental characterisation of novel drag-reducing materials for very low Earth orbits using the Satellite for Orbital Aerodynamics Research (SOAR) mission

[1]  P. Visser,et al.  Gas-surface interactions modelling infuence on satellite aerodynamics and thermosphere mass density , 2021, Journal of Space Weather and Space Climate.

[2]  T. Schwartzentruber,et al.  On the Utility of Coated POSS-Polyimides for Vehicles in Very Low Earth Orbit. , 2021, ACS applied materials & interfaces.

[3]  J. Becedas,et al.  Intake Design for an Atmosphere-Breathing Electric Propulsion System (ABEP) , 2021, 2106.15912.

[4]  P. Roberts,et al.  ADBSat: Methodology of a novel panel method tool for aerodynamic analysis of satellites , 2021, Comput. Phys. Commun..

[5]  C. Allen,et al.  Drag reduction through shape optimisation for satellites in Very Low Earth Orbit , 2021 .

[6]  S. Haigh,et al.  In-orbit aerodynamic coefficient measurements using SOAR (Satellite for Orbital Aerodynamics Research) , 2020, Acta Astronautica.

[7]  S. Haigh,et al.  A review of gas-surface interaction models for orbital aerodynamics applications , 2020, 2010.00489.

[8]  D. Knipp,et al.  Evidence for Drag Coefficient Modeling Errors near and Above the Oxygen-to-Helium Transition , 2020 .

[9]  M. Sureda,et al.  The benefits of very low earth orbit for earth observation missions , 2020, Progress in Aerospace Sciences.

[10]  P. Visser,et al.  Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models , 2020, Annales Geophysicae.

[11]  S. Haigh,et al.  ROAR -- A Ground-Based Experimental Facility for Orbital Aerodynamics Research , 2019 .

[12]  S. Haigh,et al.  RF Helicon-based Inductive Plasma Thruster (IPT) Design for an Atmosphere-Breathing Electric Propulsion system (ABEP) , 2019, Acta Astronautica.

[13]  Peter Roberts,et al.  Demonstration of Aerodynamic Control Manoeuvres in Very Low Earth Orbit using SOAR (Satellite for Orbital Aerodynamics Research) , 2019 .

[14]  S. Haigh,et al.  Concepts and Applications of Aerodynamic Attitude and Orbital Control for Spacecraft in Very Low Earth Orbit , 2019 .

[15]  S. Haigh,et al.  DISCOVERER – Making Commercial Satellite Operations in Very Low Earth Orbit a Reality , 2019 .

[16]  E. Doornbos,et al.  CHAMP and GOCE thermospheric wind characterization with improved gas-surface interactions modelling , 2019, Advances in Space Research.

[17]  Nicholas Crisp,et al.  DESIGN AND DEVELOPMENT OF A HYPER-THERMAL ATOMIC OXYGEN WIND TUNNEL FACILITY , 2019 .

[18]  G. March,et al.  High-fidelity geometry models for improving the consistency of CHAMP, GRACE, GOCE and Swarm thermospheric density data sets , 2019, Advances in Space Research.

[19]  S. Haigh,et al.  Ballistic molecular transport through two-dimensional channels , 2018, Nature.

[20]  Zhou Hao,et al.  Using the attitude response of aerostable spacecraft to measure thermospheric wind , 2018 .

[21]  Jonathan Becedas,et al.  DISCOVERER: Radical Redesign of Earth Observation Satellites for Sustained Operation at Significantly Lower Altitudes , 2017 .

[22]  T. Minton,et al.  Gas–Surface Scattering Dynamics Applied to Concentration of Gases for Mass Spectrometry in Tenuous Atmospheres , 2017 .

[23]  E. Sutton,et al.  New density estimates derived using accelerometers on board the CHAMP and GRACE satellites , 2016 .

[24]  J. Emmert,et al.  Thermospheric mass density: A review , 2015 .

[25]  Earl Lawrence,et al.  Modeling satellite drag coefficients with response surfaces , 2014 .

[26]  Josef Koller,et al.  Drag Coefficient Model Using the Cercignani–Lampis–Lord Gas–Surface Interaction Model , 2014 .

[27]  E. Sutton,et al.  Drag coefficient modeling for grace using Direct Simulation Monte Carlo , 2013 .

[28]  Peter Roberts,et al.  ΔDsat, a QB50 CubeSat mission to study rarefied-gas drag modelling , 2013 .

[29]  B. Argrow,et al.  Semi-Empirical Satellite Accommodation Model for Spherical and Randomly Tumbling Objects , 2013 .

[30]  E. Doornbos Thermospheric Density and Wind Determination from Satellite Dynamics , 2012 .

[31]  B. Argrow,et al.  Drag Coefficients of Satellites with Concave Geometries: Comparing Models and Observations , 2011 .

[32]  Brian Argrow,et al.  Semiempirical Model for Satellite Energy-Accommodation Coefficients , 2010 .

[33]  C. Pardini,et al.  Drag and energy accommodation coefficients during sunspot maximum , 2010 .

[34]  David Finkleman,et al.  A critical assessment of satellite drag and atmospheric density modeling , 2008 .

[35]  Kenneth Moe,et al.  Gas-surface interactions and satellite drag coefficients , 2005 .

[36]  Carl J. Rice,et al.  Simultaneous Analysis of Multi-Instrument Satellite Measurements of Atmospheric Density , 2004 .

[37]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[38]  Joel Storch,et al.  Aerodynamic Disturbances on Spacecraft in Free-Molecular Flow , 2002 .

[39]  F. Sharipov,et al.  Accommodation coefficient of tangential momentum on atomically clean and contaminated surfaces , 2001 .

[40]  Kenneth Moe,et al.  Improved Satellite Drag Coefficient Calculations from Orbital Measurements of Energy Accommodation , 1998 .

[41]  Bezalel Gavish,et al.  The impact of satellite altitude on the performance of LEOS based communication systems , 1998, Wirel. Networks.

[42]  Graham G. Swinerd,et al.  A free molecule aerodynamic investigation using multiple satellite analysis , 1996 .

[43]  G. Swinerd,et al.  Analysis of satellite laser ranging data to investigate satellite aerodynamics , 1995 .

[44]  K. Moe,et al.  Refinements in Determining Satellite Drag Coefficients: Method for Resolving Density Discrepancies , 1993 .

[45]  R. P. Merrill,et al.  The scattering of hydrogen, deuterium, and the rare gases from silver (111) single crystals , 1973 .

[46]  G. Somorjai,et al.  Effects of Surface Disorder, Various Surface Structures of Chemisorbed Gases and Carbon on Helium Atomic Beam Scattering from the (100) Surface of Platinum , 1971 .

[47]  F. O. Goodman Three-dimensional hard spheres theory of scattering of gas atoms from a solid surface I. Limit of large incident speed , 1967 .

[48]  H. Wachman,et al.  Formula for thermal accommodation coefficients. , 1967 .

[49]  F. Dullien,et al.  The flow of rarefied gases , 1962 .

[50]  Lee H. Sentman,et al.  FREE MOLECULE FLOW THEORY AND ITS APPLICATION TO THE DETERMINATION OF AERODYNAMIC FORCES , 1961 .

[51]  Peter Roberts,et al.  Spacecraft drag modelling , 2014 .

[52]  P. Mehta,et al.  The effect of different adsorption models on satellite drag coefficients , 2014 .

[53]  Eric K. Sutton,et al.  Normalized Force Coefficients for Satellites with Elongated Shapes , 2009 .

[54]  B. Bowman,et al.  Drag Coefficient Variability at 175-500 km from the Orbit Decay Analyses of Spheres , 2006 .

[55]  John C. Gregory,et al.  A measurement of the angular distribution of 5 eV atomic oxygen scattered off a solid surface in earth orbit , 1986 .

[56]  J. Linnett,et al.  Recombination of atoms at surfaces. Part 6.—Recombination of oxygen atoms on silica from 20°C to 600°C , 1959 .

[57]  J. Linnett,et al.  The recombination of oxygen atoms at surfaces , 1958 .