TexMol: interactive visual exploration of large flexible multi-component molecular complexes

While molecular visualization software has advanced over the years, today, most tools still operate on individual molecular structures with limited facility to manipulate large multicomponent complexes. We approach this problem by extending 3D image-based rendering via programmable graphics units, resulting in an order of magnitude speedup over traditional triangle-based rendering. By incorporating a biochemically sensitive level-of-detail hierarchy into our molecular representation, we communicate appropriate volume occupancy and shape while dramatically reducing the visual clutter that normally inhibits higher-level spatial comprehension. Our hierarchical, image based rendering also allows dynamically computed physical properties data (e.g. electrostatics potential) to be mapped onto the molecular surface, tying molecular structure to molecular function. Finally, we present another approach to interactive molecular exploration using volumetric and structural rendering in tandem to discover molecular properties that neither rendering mode alone could reveal. These visualization techniques are realized in a high-performance, interactive molecular exploration tool we call TexMol, short for Texture Molecular viewer.

[1]  Dinesh Manocha,et al.  IRW: an incremental representation for image-based walkthroughs , 2002, MULTIMEDIA '02.

[2]  Eric Martz,et al.  Protein Explorer: easy yet powerful macromolecular visualization. , 2002, Trends in biochemical sciences.

[3]  Amitabh Varshney,et al.  Walkthroughs of complex environments using image-based simplification , 1998 .

[4]  Daniel G. Aliaga,et al.  MMR: an interactive massive model rendering system using geometric and image-based acceleration , 1999, SI3D.

[5]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[6]  G. Vriend,et al.  A very fast program for visualizing protein surfaces, channels and cavities. , 1989, Journal of molecular graphics.

[7]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[8]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[9]  Frederick P. Brooks,et al.  Fast analytical computation of Richard's smooth molecular surface , 1993, Proceedings Visualization '93.

[10]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[11]  Dong Hoon Lee,et al.  Capture configuration for image-based street walkthroughs , 2003, Proceedings. 2003 International Conference on Cyberworlds.

[12]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[13]  Yizhou Yu,et al.  Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping , 1998, Rendering Techniques.

[14]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Eric A. Wernert,et al.  Image-based rendering with occlusions via cubist images , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[16]  Michael Wimmer,et al.  Eurographics Workshop on Rendering (2002) Textured Depth Meshes for Real-time Rendering of Arbitrary Scenes , 2022 .

[17]  Nelson Max Computer representation of molecular surfaces , 1984 .

[18]  M. Sanner,et al.  Reduced surface: an efficient way to compute molecular surfaces. , 1996, Biopolymers.

[19]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[20]  Conrad C. Huang,et al.  The MIDAS display system , 1988 .

[21]  R A Sayle,et al.  RASMOL: biomolecular graphics for all. , 1995, Trends in biochemical sciences.

[22]  Amitabh Varshney,et al.  Hierarchical Image-based and Polygon-based Rendering for Large-Scale Visualizations , 2003 .

[23]  Valerio Pascucci,et al.  Dynamic maintenance and visualization of molecular surfaces , 2003, Discret. Appl. Math..

[24]  Wolfgang Stuerzlinger,et al.  A Three Dimensional Image Cache for Virtual Reality , 1996, Comput. Graph. Forum.

[25]  Randima Fernando,et al.  The CG Tutorial: The Definitive Guide to Programmable Real-Time Graphics , 2003 .

[26]  Ronald Metoyer,et al.  Real-Time Lighting Changes for Image-Based Rendering , 2022 .

[27]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[28]  Herbert Edelsbrunner,et al.  Triangulating the Surface of a Molecule , 1996, Discret. Appl. Math..

[29]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[30]  Jean-Claude Spehner,et al.  Fast and robust computation of molecular surfaces , 1995, SCG '95.