A Least Squares Radial Basis Function Partition of Unity Method for Solving PDEs

Recently, collocation-based radial basis function (RBF) partition of unity methods (PUMs) for solving partial differential equations have been formulated and investigated numerically and theoretically. When combined with stable evaluation methods such as the RBF-QR method, high order convergence rates can be achieved and sustained under refinement. However, some numerical issues remain. The method is sensitive to the node layout, and condition numbers increase with the refinement level. Here, we propose a modified formulation based on least squares approximation. We show that the sensitivity to node layout is removed and that conditioning can be controlled through oversampling. We derive theoretical error estimates both for the collocation and least squares RBF-PUMs. Numerical experiments are performed for the Poisson equation in two and three space dimensions for regular and irregular geometries. The convergence experiments confirm the theoretical estimates, and the least squares formulation is shown to ...

[1]  Tobin A. Driscoll,et al.  Computing eigenmodes ofelliptic operators using radial basis functions , 2004 .

[2]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[3]  C. Shu,et al.  Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .

[4]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[5]  Robert Schaback,et al.  Convergence of Unsymmetric Kernel-Based Meshless Collocation Methods , 2007, SIAM J. Numer. Anal..

[6]  Elisabeth Larsson,et al.  A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications , 2015, J. Sci. Comput..

[7]  H. Alwardi,et al.  An adaptive least-squares collocation radial basis function method for the HJB equation , 2012, J. Glob. Optim..

[8]  Bengt Fornberg,et al.  Stabilization of RBF-generated finite difference methods for convective PDEs , 2011, J. Comput. Phys..

[9]  Bengt Fornberg,et al.  A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.

[10]  Piecewise Polynomial , 2014, Computer Vision, A Reference Guide.

[11]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[12]  Tobin A. Driscoll,et al.  Computing Eigenmodes of Elliptic Operators Using Radial Basis Functions , 2003 .

[13]  Roberto Cavoretto,et al.  Partition of unity algorithm for two-dimensional interpolation using compactly supported radial basis functions , 2013 .

[14]  Michael J. McCourt,et al.  Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..

[15]  Bengt Fornberg,et al.  A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..

[16]  Holger Wendland,et al.  Fast evaluation of radial basis functions : methods based on partition of unity , 2002 .

[17]  Erik Lehto,et al.  A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..

[18]  Bengt Fornberg,et al.  On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy , 2016, J. Comput. Phys..

[19]  FornbergBengt,et al.  On the role of polynomials in RBF-FD approximations , 2016 .

[20]  Bengt Fornberg,et al.  Stable calculation of Gaussian-based RBF-FD stencils , 2013, Comput. Math. Appl..

[21]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[22]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[23]  Christian Rieger,et al.  Improved Exponential Convergence Rates by Oversampling Near the Boundary , 2014 .

[24]  M. Urner Scattered Data Approximation , 2016 .

[25]  Roberto Cavoretto,et al.  Efficient computation of partition of unity interpolants through a block-based searching technique , 2016, Comput. Math. Appl..

[26]  Robert Schaback,et al.  Error bounds for kernel-based numerical differentiation , 2016, Numerische Mathematik.

[27]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[28]  Christian Rieger,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Sampling Inequalities for Infinitely Smooth Functions, with Applications to Interpolation and Machine Learning Sampling Inequalities for Infinitely Smooth Functions, with Applications to Interpolation and Machine Learning , 2022 .

[29]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..

[30]  V. Shcherbakov Radial basis function partition of unity operator splitting method for pricing multi-asset American options , 2016 .

[31]  Bengt Fornberg,et al.  On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs , 2017, J. Comput. Phys..

[32]  R. Schaback Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .

[33]  Oleg Davydov,et al.  On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation , 2011, Comput. Math. Appl..

[34]  Elisabeth Larsson,et al.  Radial basis function partition of unity methods for pricing vanilla basket options , 2016, Comput. Math. Appl..

[35]  Natasha Flyer,et al.  A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[37]  Robert Schaback,et al.  All well-posed problems have uniformly stable and convergent discretizations , 2014, Numerische Mathematik.

[38]  Elisabeth Larsson,et al.  Preconditioning for Radial Basis Function Partition of Unity Methods , 2016, J. Sci. Comput..

[39]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[40]  Victor Shcherbakov,et al.  A meshfree approach to non-Newtonian free surface ice flow: Application to the Haut Glacier d'Arolla , 2017, J. Comput. Phys..

[41]  Holger Wendland,et al.  Meshless Galerkin methods using radial basis functions , 1999, Math. Comput..

[42]  Jonas Persson,et al.  BENCHOP – The BENCHmarking project in option pricing† , 2015, Int. J. Comput. Math..

[43]  Bengt Fornberg,et al.  Stable computations with flat radial basis functions using vector-valued rational approximations , 2016, J. Comput. Phys..

[44]  Bengt Fornberg,et al.  Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..

[45]  Elisabeth Larsson,et al.  A Galerkin Radial Basis Function Method for the Schrödinger Equation , 2013, SIAM J. Sci. Comput..

[46]  B. Fornberg,et al.  Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .

[47]  Roberto Cavoretto,et al.  A Trivariate Interpolation Algorithm Using a Cube-Partition Searching Procedure , 2014, SIAM J. Sci. Comput..

[48]  Roberto Cavoretto,et al.  A meshless interpolation algorithm using a cell-based searching procedure , 2014, Comput. Math. Appl..

[49]  B. Fornberg,et al.  A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .

[50]  Elisabeth Larsson,et al.  Stable Computation of Differentiation Matrices and Scattered Node Stencils Based on Gaussian Radial Basis Functions , 2013, SIAM J. Sci. Comput..

[51]  Roberto Cavoretto,et al.  RBF-PU interpolation with variable subdomain sizes and shape parameters , 2016 .