Structure discrimination in block-oriented models using linear approximations: A theoretic framework

In this paper we show that it is possible to retrieve structural information about complex block-oriented nonlinear systems, starting from linear approximations of the nonlinear system around different setpoints. The key idea is to monitor the movements of the poles and zeros of the linearized models and to reduce the number of candidate models on the basis of these observations. Besides the well known open loop single branch Wiener-, Hammerstein-, and Wiener-Hammerstein systems, we also cover a number of more general structures like parallel (multi branch) Wiener-Hammerstein models, and closed loop block oriented models, including linear fractional representation (LFR) models.

[1]  Brett Ninness,et al.  Generalised Hammerstein–Wiener system estimation and a benchmark application , 2012 .

[2]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[3]  S. Billings Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains , 2013 .

[4]  Rik Pintelon,et al.  A Nonlinear Block Structure Identification Procedure Using Frequency Response Function Measurements , 2008, IEEE Transactions on Instrumentation and Measurement.

[5]  David T. Westwick,et al.  Identification of nonlinear physiological systems , 2003 .

[6]  Arthur Gelb,et al.  Multiple-Input Describing Functions and Nonlinear System Design , 1968 .

[7]  G. Palm,et al.  On representation and approximation of nonlinear systems , 1979, Biological Cybernetics.

[8]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[9]  J. Schoukens,et al.  Robustness of the Related Linear Dynamic System Estimates in Cascaded Nonlinear MIMO Systems , 2006, 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings.

[10]  Yves Rolain,et al.  Identification of a Block-Structured Nonlinear Feedback System, Applied to a Microwave Crystal Detector , 2008, IEEE Transactions on Instrumentation and Measurement.

[11]  Laurent Vanbeylen,et al.  Nonlinear LFR Block-Oriented Model: Potential Benefits and Improved, User-Friendly Identification Method , 2013, IEEE Transactions on Instrumentation and Measurement.

[12]  Gerd Vandersteen,et al.  Robustness Issues of the Best Linear Approximation of a Nonlinear System , 2009, IEEE Transactions on Instrumentation and Measurement.

[13]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[14]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[15]  J. Schoukens,et al.  Robustness Issues of the Equivalent Linear Representation of a Nonlinear System , 2008, 2008 IEEE Instrumentation and Measurement Technology Conference.

[16]  Charles A. Desoer,et al.  Small-signal behavior of nonlinear lumped networks , 1968 .

[17]  Michael J. Korenberg,et al.  Parallel cascade identification and kernel estimation for nonlinear systems , 2006, Annals of Biomedical Engineering.

[18]  Er-Wei Bai,et al.  Non-Parametric Nonlinear System Identification: An Asymptotic Minimum Mean Squared Error Estimator , 2010, IEEE Transactions on Automatic Control.

[19]  Yves Rolain,et al.  An identification algorithm for parallel Wiener-Hammerstein systems , 2013, 52nd IEEE Conference on Decision and Control.

[20]  Lennart Ljung,et al.  Linear approximations of nonlinear FIR systems for separable input processes , 2005, Autom..

[21]  M. Enqvist Linear models of nonlinear systems , 2005 .

[22]  Yves Rolain,et al.  Parametric identification of parallel Wiener-Hammerstein systems , 2017, Autom..

[23]  Jan Swevers,et al.  Identification of nonlinear systems using Polynomial Nonlinear State Space models , 2010, Autom..

[24]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[25]  E. Bai,et al.  Block Oriented Nonlinear System Identification , 2010 .

[26]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[27]  Jonathan R. Partington,et al.  On linear models for nonlinear systems , 2003, Autom..

[28]  Robert Haber Nonlinear System Identification : Input-output Modeling Approach , 1999 .

[29]  L. Nagel,et al.  SPICE (Simulation Program with Integrated Circuit Emphasis) , 1973 .