STEP: Stochastic Traversability Evaluation and Planning for Risk-Aware Off-road Navigation

Although ground robotic autonomy has gained widespread usage in structured and controlled environments, autonomy in unknown and off-road terrain remains a difficult problem. Extreme, off-road, and unstructured environments such as undeveloped wilderness, caves, and rubble pose unique and challenging problems for autonomous navigation. To tackle these problems we propose an approach for assessing traversability and planning a safe, feasible, and fast trajectory in real-time. Our approach, which we name STEP (Stochastic Traversability Evaluation and Planning), relies on: 1) rapid uncertaintyaware mapping and traversability evaluation, 2) tail risk assessment using the Conditional Value-at-Risk (CVaR), and 3) efficient risk and constraint-aware kinodynamic motion planning using sequential quadratic programming-based (SQP) model predictive control (MPC). We analyze our method in simulation and validate its efficacy on wheeled and legged robotic platforms exploring extreme terrains including an abandoned subway and an underground lava tube. (See video: https://youtu.be/N97cv4eH5c8)

[1]  Jekan Thangavelautham,et al.  Path planning and navigation inside off-world lava tubes and caves , 2018, 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS).

[2]  Insoon Yang,et al.  Risk-Aware Motion Planning and Control Using CVaR-Constrained Optimization , 2019, IEEE Robotics and Automation Letters.

[3]  Amanda Bouman,et al.  Autonomous Spot: Long-Range Autonomous Exploration of Extreme Environments with Legged Locomotion , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[4]  Joel W. Burdick,et al.  Risk-Sensitive Motion Planning using Entropic Value-at-Risk , 2020, 2021 European Control Conference (ECC).

[5]  Shie Mannor,et al.  Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach , 2015, NIPS.

[6]  Andrzej Ruszczynski,et al.  Risk-averse dynamic programming for Markov decision processes , 2010, Math. Program..

[7]  Stephen P. Boyd,et al.  OSQP: an operator splitting solver for quadratic programs , 2017, 2018 UKACC 12th International Conference on Control (CONTROL).

[8]  Marc G. Bellemare,et al.  Distributional Reinforcement Learning with Quantile Regression , 2017, AAAI.

[9]  Aaron D. Ames,et al.  Risk-Averse Planning Under Uncertainty , 2019, 2020 American Control Conference (ACC).

[10]  Larry Matthies,et al.  Stereo vision and rover navigation software for planetary exploration , 2002, Proceedings, IEEE Aerospace Conference.

[11]  Shie Mannor,et al.  Distributionally Robust Markov Decision Processes , 2010, Math. Oper. Res..

[12]  David D. Fan,et al.  Autonomous Off-road Navigation over Extreme Terrains with Perceptually-challenging Conditions , 2021, ISER.

[13]  Eric Heiden,et al.  LAMP: Large-Scale Autonomous Mapping and Positioning for Exploration of Perceptually-Degraded Subterranean Environments , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Masahiro Ono,et al.  Fast approximate clearance evaluation for rovers with articulated suspension systems , 2018, J. Field Robotics.

[15]  Panagiotis Papadakis,et al.  Terrain traversability analysis methods for unmanned ground vehicles: A survey , 2013, Eng. Appl. Artif. Intell..

[16]  Brian C. Williams,et al.  Non-Gaussian Chance-Constrained Trajectory Planning for Autonomous Vehicles Under Agent Uncertainty , 2020, IEEE Robotics and Automation Letters.

[17]  Marko Bacic,et al.  Model predictive control , 2003 .

[18]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[19]  Joel W. Burdick,et al.  Risk-Averse Stochastic Shortest Path Planning , 2021, ArXiv.

[20]  Stefan Schaal,et al.  STOMP: Stochastic trajectory optimization for motion planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[21]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[22]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[23]  M. Hutter,et al.  A Universal Grid Map Library: Implementation and Use Case for Rough Terrain Navigation , 2016 .

[24]  Thierry Siméon,et al.  Algorithms for rough terrain trajectory planning , 2002, Adv. Robotics.

[25]  Masahiro Ono,et al.  Probabilistic Kinematic State Estimation for Motion Planning of Planetary Rovers , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[26]  Aaron D. Ames,et al.  Constrained Risk-Averse Markov Decision Processes , 2020, AAAI.

[27]  Marco Pavone,et al.  A Framework for Time-Consistent, Risk-Sensitive Model Predictive Control: Theory and Algorithms , 2019, IEEE Transactions on Automatic Control.

[28]  Pieter Abbeel,et al.  Motion planning with sequential convex optimization and convex collision checking , 2014, Int. J. Robotics Res..

[29]  Riccardo Bonalli,et al.  Chance-Constrained Sequential Convex Programming for Robust Trajectory Optimization , 2020, 2020 European Control Conference (ECC).

[30]  Karol Hausman,et al.  Confidence-rich grid mapping , 2019, Int. J. Robotics Res..

[31]  Thomas Lew,et al.  NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge , 2021, ArXiv.

[32]  Reid G. Simmons,et al.  Risk-Sensitive Planning with Probabilistic Decision Graphs , 1994, KR.

[33]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[34]  Marco Hutter,et al.  Probabilistic Terrain Mapping for Mobile Robots With Uncertain Localization , 2018, IEEE Robotics and Automation Letters.

[35]  Ali-akbar Agha-mohammadi,et al.  Deep Learning Tubes for Tube MPC , 2020, Robotics: Science and Systems.

[36]  Johan Löfberg,et al.  Oops! I cannot do it again: Testing for recursive feasibility in MPC , 2012, Autom..

[37]  Marco Pavone,et al.  Chance-constrained dynamic programming with application to risk-aware robotic space exploration , 2015, Autonomous Robots.

[38]  C. Guaragnella,et al.  LOCUS: A Multi-Sensor Lidar-Centric Solution for High-Precision Odometry and 3D Mapping in Real-Time , 2020, IEEE Robotics and Automation Letters.

[39]  Marco Pavone,et al.  How Should a Robot Assess Risk? Towards an Axiomatic Theory of Risk in Robotics , 2017, ISRR.

[40]  Amanda Bouman,et al.  PLGRIM: Hierarchical Value Learning for Large-scale Exploration in Unknown Environments , 2021, ICAPS.