Nanoscale CMOS modeling

Nanoscale CMOS Modeling by Mohan Vamsi Dunga Doctor of Philosophy in Engineering Electrical Engineering and Computer Sciences University of California, Berkeley Professor Ali M. Niknejad, Chair Since its inception almost four decades ago, the conventional planar bulk silicon MOSFET has been scaled relentlessly in accordance with the Moore’s Law. However, as the state-of-the-art MOSFET makes inroads into the nanoscale regime, the traditional scaling solutions are being confronted with fundamental physical limitations stunting the rate of CMOS scaling. The insatiable need for scaled CMOS, primarily driven by the economics of computing market, is forcing researchers world-wide to seek scaling solutions in the form of alternative MOSFET structures and new materials for conventional bulk silicon MOSFET. Scaling also introduces new electrical behavior into MOSFETs which had hitherto been unknown or at the least imperceptible. Compact models describing the physics and operation of state-of-the-art bulk planar bulk MOSFETs and new CMOS scaling alternatives are imperative not only for short-term technology design and circuit-level explorations but also for long term product development. The goal of this dissertation is to develop accurate and efficient compact models for emerging nanoscale CMOS devices through a sound un1 derstanding of the underlying physics. New MOSFET architectures Multi-Gate FETs (MG-FETs) which employ the use of multiple gate electrodes to thwart the deleterious short channel efforts in scaled transistors hold promise to scale CMOS beyond 22nm technology node. The multiple gates in a MG-FET can be electrically interconnected as in FinFETs or can be biased independently as in independent MG-FETs. Surface-potential based compact models describing the electrical characteristics terminal currents, charges and capacitances are developed for both categories of MG-FETs. Full scale compact models are developed to describe the start-of-the-art MG-FET technologies. While newMOSFET architectures are being evaluated, the traditional cost-effective single-gate bulk planar CMOS is still breaking scaling and performance barriers through the use of process-induced strain. A new non-process-specific layout-dependent mobility model for mobility enhancement through process induced strain is developed to improve the modeling of state-of-the-art bulk MOSFETs. Furthermore, the scaled MOSFETs are experiencing increased variability in low-frequency noise characteristics. A thorough understanding of the underlying physics is presented together with a new statistical model for modeling the low frequency noise in scaled MOSFETs. Professor Ali M. Niknejad, Chair Date

[1]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[2]  J. G. Fossum,et al.  Analytical modeling of quantization and volume inversion in thin Si-film DG MOSFETs , 2002 .

[3]  S. Thompson,et al.  Uniaxial-process-induced strained-Si: extending the CMOS roadmap , 2006, IEEE Transactions on Electron Devices.

[4]  Bin Yu,et al.  FinFET scaling to 10 nm gate length , 2002, Digest. International Electron Devices Meeting,.

[5]  K. K. Young Short-channel effect in fully depleted SOI MOSFETs , 1989 .

[6]  M.T. Yang,et al.  Statistical characterization and Monte-Carlo simulation of low-frequency noise variations in foundry AMS/RF CMOS technology , 2006, Digest of Papers. 2006 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[7]  C. Sah,et al.  Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors☆ , 1966 .

[8]  Risto M. Nieminen,et al.  Electronic Properties of Two-Dimensional Systems , 1988 .

[9]  Gordon E. Moore,et al.  Progress in digital integrated electronics , 1975 .

[10]  D.L. Critchlow,et al.  Mosfet Scaling-the Driver of VLSI Technology , 1999, Proceedings of the IEEE.

[11]  E. Nowak,et al.  High-performance CMOS variability in the 65-nm regime and beyond. IBM J Res And Dev , 2006 .

[12]  Yuan Taur,et al.  A 2-D analytical solution for SCEs in DG MOSFETs , 2004, IEEE Transactions on Electron Devices.

[13]  E. Nowak,et al.  High-performance symmetric-gate and CMOS-compatible V/sub t/ asymmetric-gate FinFET devices , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[14]  Chenming Hu,et al.  A Compact Quantum-Mechanical Model for Double-Gate MOSFET , 2006, 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings.

[15]  Yuan Taur,et al.  An analytic potential model for symmetric and asymmetric DG MOSFETs , 2006 .

[16]  T. Liu,et al.  FinFET Performance Enhancement with Tensile Metal Gates and Strained Silicon on Insulator (sSOI) Substrate , 2006, 2006 64th Device Research Conference.

[17]  Chenming Hu,et al.  Modeling Advanced FET Technology in a Compact Model , 2006, IEEE Transactions on Electron Devices.

[18]  M. Ieong,et al.  Monte Carlo modeling of threshold variation due to dopant fluctuations , 1999, 1999 Symposium on VLSI Circuits. Digest of Papers (IEEE Cat. No.99CH36326).

[19]  R. Havens,et al.  Noise modeling for RF CMOS circuit simulation , 2003 .

[20]  J.C. Lee,et al.  High-k dielectrics and MOSFET characteristics , 2003, IEEE International Electron Devices Meeting 2003.

[21]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[22]  R.W. Dutton,et al.  A charge-oriented model for MOS transistor capacitances , 1978, IEEE Journal of Solid-State Circuits.

[23]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[24]  Michael J. Uren,et al.  1/f and random telegraph noise in silicon metal‐oxide‐semiconductor field‐effect transistors , 1985 .

[25]  Andrew R. Brown,et al.  RTS amplitudes in decananometer MOSFETs: 3-D simulation study , 2003 .

[26]  Suman Datta,et al.  High- /Metal-Gate Stack and Its MOSFET Characteristics , 2004 .

[27]  Chung-Hsun Lin,et al.  A Multi-Gate MOSFET Compact Model Featuring Independent-Gate Operation , 2007, 2007 IEEE International Electron Devices Meeting.

[28]  Yuhua Cheng,et al.  MOSFET Modeling and Bsim3 User's Guide , 1999 .

[29]  J. Brews A charge-sheet model of the MOSFET , 1978 .

[30]  T. Sugii,et al.  Analytical threshold voltage model for short channel n/sup +/-p/sup +/ double-gate SOI MOSFETs , 1996 .

[31]  C. Hu,et al.  BSIM-MG: A Versatile Multi-Gate FET Model for Mixed-Signal Design , 2007, 2007 IEEE Symposium on VLSI Technology.

[32]  R. Thewes,et al.  Modeling of statistical low-frequency noise of deep-submicrometer MOSFETs , 2004, IEEE Transactions on Electron Devices.

[33]  R. Dennard,et al.  Design of micron MOS switching devices , 1972 .

[34]  W. Grabinski,et al.  RF distortion analysis with compact MOSFET models , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[35]  J.S. Kilby,et al.  Invention of the integrated circuit , 1976, IEEE Transactions on Electron Devices.

[36]  F. Balestra,et al.  Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance , 1987, IEEE Electron Device Letters.

[37]  Shekhar Y. Borkar,et al.  Design challenges of technology scaling , 1999, IEEE Micro.

[38]  K. Steinhubl Design of Ion-Implanted MOSFET'S with Very Small Physical Dimensions , 1974 .

[39]  A. Vandooren,et al.  CMOS Vertical Multiple Independent Gate Field Effect Transistor (MIGFET) , 2004, 2004 IEEE International SOI Conference (IEEE Cat. No.04CH37573).

[40]  M. Silberstein,et al.  A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors , 2003, IEEE International Electron Devices Meeting 2003.

[41]  C. Hu,et al.  A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors , 1990 .

[42]  G. Pei,et al.  FinFET design considerations based on 3-D simulation and analytical modeling , 2002 .

[43]  Hsiang,et al.  Theory and experiment on the 1/f gamma noise in p-channel metal-oxide-semiconductor field-effect transistors at low drain bias. , 1986, Physical review. B, Condensed matter.

[44]  Jack S Kilby,et al.  TURNING POTENTIAL INTO REALITIES: THE INVENTION OF THE INTEGRATED CIRCUIT , 2002 .

[45]  D. Paul Si/SiGe heterostructures: from material and physics to devices and circuits , 2004 .

[46]  E. Merzbacher Quantum mechanics , 1961 .

[47]  Dipu Pramanik,et al.  Stress-aware design methodology , 2006, 7th International Symposium on Quality Electronic Design (ISQED'06).

[48]  E. Harrell,et al.  A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs , 2003 .

[49]  李幼升,et al.  Ph , 1989 .

[50]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[51]  C.C. Chen,et al.  Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65nm high-performance strained-Si device application , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[52]  H. Wong,et al.  CMOS scaling into the nanometer regime , 1997, Proc. IEEE.

[53]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[54]  D. Frank,et al.  Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25 nm channel length generation , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[55]  Zeynep Celik-Butler,et al.  Spectral dependence of 1ƒγ noise on gate bias in n-MOSFETS , 1987 .

[56]  清水 昭博,et al.  Local Mechanical-Stress Control(LMC): A New Technique for CMOS-Performance Enhancement , 2002 .

[57]  D. Kahng,et al.  Silicon-Silicon Dioxide Surface Device , 1991 .

[58]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[59]  Y. Taur,et al.  A continuous, analytic drain-current model for DG MOSFETs , 2004 .

[60]  I. Lundström,et al.  Low frequency noise in MOS transistors—I Theory , 1968 .

[61]  G. Gildenblat,et al.  PSP: An Advanced Surface-Potential-Based MOSFET Model for Circuit Simulation , 2006, IEEE Transactions on Electron Devices.

[62]  A. Asenov Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFET's: A 3-D "atomistic" simulation study , 1998 .

[63]  Ali Hajimiri,et al.  A general theory of phase noise in electrical oscillators , 1998 .

[64]  Yuan Taur,et al.  Analytic solutions of charge and capacitance in symmetric and asymmetric double-gate MOSFETs , 2001 .

[65]  C. Auth,et al.  Delaying forever: Uniaxial strained silicon transistors in a 90nm CMOS technology , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[66]  S. Thompson,et al.  Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[67]  V. Trivedi,et al.  Quantum-mechanical effects on the threshold voltage of undoped double-gate MOSFETs , 2005, IEEE Electron Device Letters.

[68]  M. Jurczak,et al.  Experimental and comparative investigation of low and high field transport in substrate- and process-induced strained nanoscaled MOSFETs , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[69]  T. Sugii,et al.  Analytical threshold voltage model for short channel double-gate SOI MOSFETs , 1996 .

[70]  B. Nikolic,et al.  Energy-delay optimization of thin-body MOSFETs for the sub-15 nm regime , 2004, 2004 IEEE International SOI Conference (IEEE Cat. No.04CH37573).

[71]  G. Gildenblat,et al.  PSP-based compact FinFET model describing dc and RF measurements , 2006, 2006 International Electron Devices Meeting.

[72]  G. Baccarani,et al.  A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects , 1999 .

[73]  J. Kavalieros,et al.  High-/spl kappa//metal-gate stack and its MOSFET characteristics , 2004, IEEE Electron Device Letters.

[74]  Mansun Chan,et al.  Analysis of Geometry-Dependent Parasitics in Multifin Double-Gate FinFETs , 2007, IEEE Transactions on Electron Devices.

[75]  M. J. Kirton,et al.  Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/ƒ) noise , 1989 .

[76]  B.C. Paul,et al.  Modeling and optimization of fringe capacitance of nanoscale DGMOS devices , 2005, IEEE Transactions on Electron Devices.

[77]  Y. Tosaka,et al.  Scaling theory for double-gate SOI MOSFET's , 1993 .

[78]  J. V. Faricelli,et al.  A physical compact MOSFET model, including quantum mechanical effects, for statistical circuit design applications , 1995, Proceedings of International Electron Devices Meeting.

[79]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[80]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[81]  Christian Enz,et al.  A Design Oriented Charge-based Current Model for Symmetric DG MOSFET and its Correlation with the EKV Formalism , 2005 .

[82]  A. Grill,et al.  Strained Si NMOSFETs for high performance CMOS technology , 2001, 2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184).

[83]  M. Dutoit,et al.  Random telegraph signals in deep submicron n-MOSFET's , 1994 .