Determination of trypsin using protamine mediated fluorescent enhancement of DNA templated Au nanoclusters

[1]  X. Su,et al.  A ratiometric fluorescence strategy based on polyethyleneimine surface-modified carbon dots and Eosin Y for the ultrasensitive determination of protamine and trypsin. , 2022, The Analyst.

[2]  Xinhua Lin,et al.  Ultrasensitive off-on-off fluorescent nanosensor for protamine and trypsin detection based on inner-filter effect between N,S-CDs and gold nanoparticles , 2021 .

[3]  Zhongliang Xiao,et al.  l-Histidine-DNA interaction: a strategy for the improvement of the fluorescence signal of poly(adenine) DNA-templated gold nanoclusters , 2021, Microchimica Acta.

[4]  Zhihe Qing,et al.  DNA-coded metal nano-fluorophores: Preparation, properties and applications in biosensing and bioimaging , 2021 .

[5]  Xiaoping Zhou,et al.  Recent advances in the bioanalytical and biomedical applications of DNA-templated silver nanoclusters , 2020 .

[6]  Ke-Qin Zhang,et al.  Biomolecule-assisted synthesis and functionality of metal nanoclusters for biological sensing: a review , 2019, Materials Chemistry Frontiers.

[7]  Tian Gan,et al.  Poly(adenine)-templated fluorescent Au nanoclusters for the rapid and sensitive detection of melamine. , 2019, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[8]  Kemin Wang,et al.  Progress in biosensor based on DNA-templated copper nanoparticles. , 2019, Biosensors & bioelectronics.

[9]  Yanming Liu,et al.  DNA-templated Au nanoclusters coupled with proximity-dependent hybridization and guanine-rich DNA induced quenching: a sensitive fluorescent biosensing platform for DNA detection , 2019, Nanoscale advances.

[10]  Lian Xia,et al.  Aggregation-induced emission enhancement of gold nanoclusters triggered by silicon nanoparticles for ratiometric detection of protamine and trypsin. , 2019, Analytica chimica acta.

[11]  E. Wang,et al.  Cationic-Polyelectrolyte-Modified Fluorescent DNA-Silver Nanoclusters with Enhanced Emission and Higher Stability for Rapid Bioimaging. , 2018, Analytical chemistry.

[12]  Yi Lv,et al.  DNA-templated copper nanoparticles: Versatile platform for label-free bioassays , 2018, TrAC Trends in Analytical Chemistry.

[13]  Yanming Liu,et al.  DNA-templated Au nanoclusters and MnO2 sheets: a label-free and universal fluorescence biosensing platform , 2018 .

[14]  S. Yao,et al.  Silver triangular nanoplates as an high efficiently FRET donor-acceptor of upconversion nanoparticles for ultrasensitive "Turn on-off" protamine and trypsin sensor. , 2017, Talanta.

[15]  Minghui Yang,et al.  Fluorescence assay of Fe (III) in human serum samples based on pH dependent silver nanoclusters , 2017 .

[16]  J. Jorgenson,et al.  Performance comparison of three trypsin columns used in liquid chromatography. , 2017, Journal of chromatography. A.

[17]  Kemin Wang,et al.  In situ formation of fluorescent copper nanoparticles for ultrafast zero-background Cu2+ detection and its toxicides screening. , 2016, Biosensors & bioelectronics.

[18]  Yongming Guo,et al.  Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions. , 2016, Nanoscale.

[19]  X. Qu,et al.  Metal Nanoclusters: Novel Probes for Diagnostic and Therapeutic Applications , 2016 .

[20]  Hai-Bo Wang,et al.  A fluorescent biosensor for protein detection based on poly(thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA. , 2015, Biosensors & bioelectronics.

[21]  Hai-Bo Wang,et al.  A label-free and ultrasensitive fluorescent sensor for dopamine detection based on double-stranded DNA templated copper nanoparticles , 2015 .

[22]  Yunchao Wu,et al.  UV-Light-Induced Improvement of Fluorescence Quantum Yield of DNA-Templated Gold Nanoclusters: Application to Ratiometric Fluorescent Sensing of Nucleic Acids. , 2015, ACS applied materials & interfaces.

[23]  Z. Li,et al.  A label-free method for detecting biothiols based on poly(thymine)-templated copper nanoparticles. , 2015, Biosensors & bioelectronics.

[24]  Xiao-yan Li,et al.  A sensitive assay for trypsin using poly(thymine)-templated copper nanoparticles as fluorescent probes. , 2015, The Analyst.

[25]  M. Mccaman,et al.  Quantitation of residual trypsin in cell-based therapeutics using immobilized α-1-antitrypsin or SBTI in an ELISA format. , 2015, Journal of immunological methods.

[26]  Xiaodong Xia,et al.  Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition. , 2015, Analytical chemistry.

[27]  Iván Castelló Serrano,et al.  Dual core quantum dots for highly quantitative ratiometric detection of trypsin activity in cystic fibrosis patients. , 2014, Nanoscale.

[28]  Erkang Wang,et al.  Metal nanoclusters: New fluorescent probes for sensors and bioimaging , 2014 .

[29]  H. Qi,et al.  Electrochemical determination of trypsin using a heptapeptide substrate self-assembled on a gold electrode , 2014, Microchimica Acta.

[30]  Kemin Wang,et al.  Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. , 2013, Angewandte Chemie.

[31]  Xiaogang Qu,et al.  Polycations-functionalized water-soluble gold nanoclusters: a potential platform for simultaneous enhanced gene delivery and cell imaging. , 2013, Nanoscale.

[32]  Zhikun Wu,et al.  Quantum sized gold nanoclusters with atomic precision. , 2012, Accounts of chemical research.

[33]  Wei Chen,et al.  Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. , 2012, Chemical Society reviews.

[34]  S. Parveen,et al.  Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. , 2012, Biosensors & bioelectronics.

[35]  Andriy Mokhir,et al.  Selective dsDNA-templated formation of copper nanoparticles in solution. , 2010, Angewandte Chemie.

[36]  Robert M Dickson,et al.  DNA-templated Ag nanocluster formation. , 2004, Journal of the American Chemical Society.

[37]  Hsueh Jei Li,et al.  Poly(L–lysine)–DNA interactions in NaCl solutions: B → C and B → ψ Transitions , 1977, Biopolymers.

[38]  G. Fasman,et al.  Conformational changes associated with f-1 histone-deoxyribonucleic acid complexes. Circular dichroism studies. , 1970, Biochemistry.