Multitasked embedded multigrid for three-dimensional flow simulation. Final report
暂无分享,去创建一个
This project explored fast algorithms for Euler and Navier-Stokes simulations. A particular issue pursued under the grant was the integration of an explicit three dimensional flow solver, embedded mesh refinements, a model equation hierarchy, multiple grid acceleration and extensive rectorization and multi tasking. Several papers were produced during this effort including such titles as Multitasked embedded multigrid for three-dimensional flow simulation and Multigrid approaches to the Euler equations. An efficient algorithm designed to be used for Navier-Stokes simulations of complex flows over complete configurations is described. The algorithm incorporates a number of elements, including an explicit three-dimensional flow solver, embedded mesh refinements, a model equation hierarchy ranging from the Euler equations through the full Navier-Stokes equations, multiple-grid convergence acceleration and extensive vectorization and multitasking for efficient execution on parallel-processing supercomputers. Results are presented for a preliminary trial of the method on a problem representative of turbomachinery applications. Based on this performance data, it is estimated that a mature implementation of the algorithm will yield overall speedups ranging as high as 100.