New predicted ground state and high pressure phases of TcB3 and TcB4: First-principles

Abstract The energetically favorite crystal structures at special composition for Tc-B system are studied systematically based on the density functional theory combined with the particle-swarm optimization (PSO) method. The experimentally obtained structure hP6-TcB2 is in excellent agreement with the predicted one. Moreover, a new ground state phase hP4-TcB3 (P-6m2, No. 187) is predicted for stoichiometric ratio as 1:3 (TcB3) for the first time. For TcB4, the predicted favorite hP10-TcB4 (P63/mmc, No. 194) is metastable at 0 GPa and becomes the absolutely stable phase at 100 GPa. The hP6-TcB2 exhibits the highest shear modulus of 269 GPa, and smallest Poisson’s ratio of 0.188, followed by hP10-TcB4 (239 GPa and 0.200), and then hP4-TcB3 (237 GPa and 0.209). Those are comparable to the experimental data (267 GPa and 0.15) of ReB2. The calculated convex hull and phonon dispersions indicate that all the newly predicted structures for Tc-B system are thermodynamically and dynamically stable. The computed DOS illustrates the metallic nature of considered compounds. Moreover, the high hardness about 39.4, 32.4, and 30.7 GPa are estimated to the most stable hP6-TcB2, hP10-TcB4, and hP4-TcB3, respectively, indicating these might be the candidates for hard or ultra-incompressible materials.

[1]  A. Zunger,et al.  Thermodynamic States and Phase Diagrams for Bulk-Incoherent, Bulk-Coherent, and Epitaxially-Coherent Semiconductor Alloys: Application to Cubic (Ga,In)N , 2008 .

[2]  J. Haines,et al.  Discovery of hardest known oxide , 1996, Nature.

[3]  Yanming Ma,et al.  Anomalous Stress Response of Ultrahard WB_{n} Compounds. , 2015, Physical review letters.

[4]  Olle Eriksson,et al.  Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2 , 1998 .

[5]  J. Rudziǹski,et al.  THE COMPOSITION AND STRUCTURE OF TECHNETIUM NITRIDE AND TECHNETIUM BORIDES , 1964 .

[6]  Q. Hou,et al.  Structural optimization and physical properties of TcB3 and MoB3 at high-pressure: First-principles , 2016 .

[7]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[8]  S. Aydin,et al.  First-principles calculations of MnB 2 , TcB 2 , and ReB 2 within the ReB 2 -type structure , 2009 .

[9]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[10]  Chris-Kriton Skylaris,et al.  A benchmark for materials simulation , 2016, Science.

[11]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[12]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[13]  Richard B Kaner,et al.  Osmium diboride, an ultra-incompressible, hard material. , 2005, Journal of the American Chemical Society.

[14]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[15]  Gustaaf Van Tendeloo,et al.  Discovery of a superhard iron tetraboride superconductor. , 2013, Physical review letters.

[16]  Ruifeng Zhang,et al.  Superhard materials with low elastic moduli: Three-dimensional covalent bonding as the origin of superhardness in B 6 O , 2011 .

[17]  Kristian S. Thygesen,et al.  Making the most of materials computations , 2016, Science.

[18]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[19]  Yuanxu Wang Elastic and electronic properties of TcB2 and superhard ReB2: First-principles calculations , 2007 .

[20]  Richard B. Kaner,et al.  Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure , 2007, Science.

[21]  H. Seip,et al.  A Note on the Crystal Structure of MnB4. , 1969 .

[22]  Gui Yang,et al.  Phase stability and physical properties of technetium borides: A first-principles study , 2014 .

[23]  Yonghui Du,et al.  Hardness of FeB4: density functional theory investigation. , 2014, The Journal of chemical physics.

[24]  Zhijian Wu,et al.  Structural stability and phase transition in OsC and RuC , 2010, J. Comput. Chem..

[25]  Haiyan Yan,et al.  New crystal structure and physical properties of TcB from first-principles calculations , 2015 .

[26]  S. Tolbert,et al.  Advancements in the Search for Superhard Ultra‐Incompressible Metal Borides , 2009 .

[27]  Bo Xu,et al.  Microscopic theory of hardness and design of novel superhard crystals , 2012 .

[28]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[29]  Chengchun Tang,et al.  Prediction of Two-Dimensional Boron Sheets by Particle Swarm Optimization Algorithm , 2012 .

[30]  D. He,et al.  Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4 , 2014, Journal of Superhard Materials.

[31]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[32]  Xiaojuan Liu,et al.  Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles , 2007 .

[33]  J. Betts,et al.  Full elastic tensor of a crystal of the superhard compound ReB2 , 2010 .

[34]  Dianzhong Li,et al.  Modeling hardness of polycrystalline materials and bulk metallic glasses , 2011 .

[35]  D. Clarke,et al.  Anisotropic elastic and thermal properties of the double perovskite slab–rock salt layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure , 2012 .

[36]  A. N. Kolmogorov,et al.  Stability of 41 metal - boron systems at 0 GPa and 30 GPa from first principles , 2013, 1310.4157.

[37]  Hui Wang,et al.  Universal ground state hexagonal phases and mechanical properties of stoichiometric transition metal tetraborides: TMB4 (TM = W, Tc, and Re) , 2013 .

[38]  Bin Xu,et al.  First-principles calculations of MnB4, TcB4, and ReB4 with the MnB4-type structure , 2012 .

[39]  N. A. Sörensen,et al.  The Crystal Structure of MnB4. , 1970 .

[40]  Yanchao Wang,et al.  Superhard BC(3) in cubic diamond structure. , 2015, Physical review letters.

[41]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[42]  Yinwei Li,et al.  High-Energy Density and Superhard Nitrogen-Rich B-N Compounds. , 2015, Physical review letters.

[43]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[44]  Walter Steurer,et al.  Transition Metal Borides: Superhard versus Ultra‐incompressible , 2008 .

[45]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .