Recursive Dynamics for Floating-Base Systems

Robotic systems studied in Chap. 6 have their bases fixed, however, in reality many robotic systems have their bases mobile or floating. In the case of a fixed-base robotic system, the base does not influence the dynamics, whereas it significantly influences the dynamics in the case of a floating-base robotic system. Space manipulators and legged robots are examples of floating-base robotic systems. Legged robots find applications in maintenance task of industrial plants, operations in dangerous and emergency environments, surveillance, maneuvering unknown terrains, human care, terrain adaptive vehicles and many more. In the case of legged robots they are either classified based on the number of legs, e.g., biped, quadruped, hexapod, etc., or the way it balances, e.g., statically or dynamically balanced. As reviewed in Chap. 2, legged robots (1) have variable topology, (2) move with high joint accelerations, (3) are dynamically not balanced if Center-of-Mass (COM) moves out of the polygon formed by the support feet, and (4) are under actuated. Hence, objective of achieving stable motion is difficult to decompose into actuator commands. Therefore, control of legged robots is intricate and dynamics plays vital role in achieving stable motion.

[1]  Scott McMillan,et al.  Forward dynamics of multilegged vehicles using the composite rigid body method , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[2]  Masahiro Fujita,et al.  A small biped entertainment robot exploring attractive applications , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[3]  Hiroshi Kimura,et al.  Realization of Dynamic Walking and Running of the Quadruped Using Neural Oscillator , 1999, Auton. Robots.

[4]  Hirochika Inoue,et al.  Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[5]  Jeffrey C. Trinkle,et al.  An implicit time-stepping scheme for rigid body dynamics with Coulomb friction , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  Katsu Yamane,et al.  Dynamics computation of structure-varying kinematic chains for motion synthesis of humanoid , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[7]  Michael Valášek,et al.  Kinematics and Dynamics of Machinery , 1996 .

[8]  B. Nigg,et al.  Biomechanics of the musculo-skeletal system , 1995 .

[9]  Evan Drumwright,et al.  A Fast and Stable Penalty Method for Rigid Body Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[10]  Toru Shimada,et al.  Self-Excited Walking of a Biped Mechanism , 2001, Int. J. Robotics Res..

[11]  John E. Lloyd,et al.  Fast Implementation of Lemke's Algorithm for Rigid Body Contact Simulation , 2005, ICRA.

[12]  A. J. van den Bogert,et al.  Simulation of quadrupedal locomotion using a rigid body model. , 1989, Journal of biomechanics.

[13]  Costas S. Tzafestas,et al.  Comparative simulation study of three control techniques applied to a biped robot , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[14]  Ryo Kurazume,et al.  Feedforward and Feedback Dynamic Trot Gait Control for Quadruped Walking Vehicle , 2001, Auton. Robots.

[15]  Ohung Kwon,et al.  Asymmetric trajectory generation and impedance control for running of biped robots , 2009, Auton. Robots.

[16]  S. Saha Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal Complement Matrices , 1999 .

[17]  Takahiro Doi,et al.  Development of a quadruped walking robot to work on steep slopes, TITAN XI (walking motion with compensation for compliance) , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Katsu Yamane,et al.  Stable penalty-based model of frictional contacts , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[19]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Scott McMillan,et al.  Efficient dynamic simulation of an underwater vehicle with a robotic manipulator , 1995, IEEE Trans. Syst. Man Cybern..

[21]  Andy Ruina,et al.  A Bipedal Walking Robot with Efficient and Human-Like Gait , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[22]  Jong H. Park,et al.  Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[23]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[24]  Shuuji Kajita,et al.  Pattern Generation of Biped Walking Constrained on Parametric Surface , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[25]  M H Raibert,et al.  Trotting, pacing and bounding by a quadruped robot. , 1990, Journal of biomechanics.

[26]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[27]  Roy Featherstone,et al.  Robot Dynamics Algorithms , 1987 .

[28]  David E. Orin,et al.  Intelligent control of quadruped gallops , 2003 .

[29]  Atsuo Takanishi,et al.  Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[30]  Kazuhito Yokoi,et al.  Real-Time Planning of Humanoid Robot's Gait for Force-Controlled Manipulation , 2004, IEEE/ASME Transactions on Mechatronics.

[31]  Subir Kumar Saha,et al.  Analytical Expression for the Inverted Inertia Matrix of Serial Robots , 1999, Int. J. Robotics Res..

[32]  Eadweard Muybridge,et al.  Animals in Motion , 1957 .

[33]  Fumio Kanehiro,et al.  Humanoid robot HRP-2 , 2008, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[34]  Miomir Vukobratović,et al.  Biped Locomotion: Dynamics, Stability, Control and Application , 1990 .

[35]  Daniel E. Koditschek,et al.  Model-Based Dynamic Self-Righting Maneuvers for a Hexapedal Robot , 2004, Int. J. Robotics Res..

[36]  Olivier Bruneau,et al.  Dynamic Analysis Tool for Legged Robots , 1998 .

[37]  Rajnikant V. Patel,et al.  Dynamic Analysis of Robot Manipulators , 1991 .

[38]  Jan Wikander,et al.  The basic design of the quadruped robot WARP1 , 2000 .

[39]  Shuuji Kajita,et al.  Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[40]  Subir Kumar Saha,et al.  A Dynamic Model Based Robot Arm Selection Criterion , 2004 .

[41]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[42]  Frans C. T. van der Helm,et al.  How to keep from falling forward: elementary swing leg action for passive dynamic walkers , 2005, IEEE Transactions on Robotics.

[43]  Branislav Borovac,et al.  Simulation model of general human and humanoid motion , 2007 .

[44]  A. J. van den Bogert,et al.  Direct dynamics simulation of the impact phase in heel-toe running. , 1995, Journal of biomechanics.

[45]  Masayuki Inaba,et al.  A Fast Dynamically Equilibrated Walking Trajectory Generation Method of Humanoid Robot , 2002, Auton. Robots.

[46]  David E. Orin,et al.  Simulation of contact using a nonlinear damping model , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[47]  Kazuhito Yokoi,et al.  Planning walking patterns for a biped robot , 2001, IEEE Trans. Robotics Autom..

[48]  Rajnikant V. Patel,et al.  Dynamic analysis of robot manipulators - a Cartesian tensor approach , 1991, The Kluwer international series in engineering and computer science.

[49]  John F. Canny,et al.  Impulse-based simulation of rigid bodies , 1995, I3D '95.

[50]  Martin Buehler,et al.  Stable open loop walking in quadruped robots with stick legs , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[51]  Ryo Kurazume,et al.  The Sway Compensation Trajectory for a Biped Robot , 2003 .

[52]  Tsu-Tian Lee,et al.  Inverse kinematics and inverse dynamics for control of a biped walking machine , 1993, J. Field Robotics.

[53]  David E. Orin,et al.  Efficient Dynamic Simulation of a Quadruped Using a Decoupled Tree-Structure Approach , 1991, Int. J. Robotics Res..

[54]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[55]  P. P. Gambari︠a︡n How mammals run : anatomical adaptations , 1974 .

[56]  M. Sakaguchi,et al.  Realization of bounce gait in a quadruped robot with articular-joint-type legs , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.