On edge connectivity of direct products of graphs

Let @l(G) be the edge connectivity of G. The direct product of graphs G and H is the graph with vertex set V(GxH)=V(G)xV(H), where two vertices (u"1,v"1) and (u"2,v"2) are adjacent in GxH if u"1u"2@?E(G) and v"1v"2@?E(H). We prove that @l(GxK"n)=min{n(n-1)@l(G),(n-1)@d(G)} for every nontrivial graph G and n>=3. We also prove that for almost every pair of graphs G and H with n vertices and edge probability p, GxH is k-connected, where k=O((n/logn)^2).

[1]  Jun-Ming Xu,et al.  Reliability of interconnection networks modeled by Cartesian product digraphs , 2008 .

[2]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[3]  Wilfried Imrich,et al.  Hypercubes As Direct Products , 2005, SIAM J. Discret. Math..

[4]  Aygul Mamut,et al.  Vertex vulnerability parameters of Kronecker products of complete graphs , 2008, Inf. Process. Lett..

[5]  Bostjan Bresar,et al.  Edge-connectivity of strong products of graphs , 2007, Discuss. Math. Graph Theory.

[6]  Jun-Ming Xu,et al.  Connectivity of Cartesian product graphs , 2006, Discret. Math..

[7]  S. A. Ghozati A finite automata approach to modeling the cross product of interconnection networks , 1999 .

[8]  Jun-Ming Xu,et al.  Connectivity of lexicographic product and direct product of graphs , 2013, Ars Comb..

[9]  N. Alon,et al.  Independent sets in tensor graph powers , 2007 .

[10]  Norma Zagaglia Salvi,et al.  Double graphs , 2008, Discret. Math..

[11]  Jun-Ming Xu,et al.  Connectivity and super-connectivity of Cartesian product graphs , 2010, Ars Comb..

[12]  Bostjan Bresar,et al.  On the connectivity of the direct product of graphs , 2008, Australas. J Comb..

[13]  Simon Spacapan Connectivity of Strong Products of Graphs , 2010, Graphs Comb..

[14]  Simon Spacapan,et al.  Connectivity of Cartesian products of graphs , 2008, Appl. Math. Lett..

[15]  Elkin Vumar,et al.  A note on the connectivity of Kronecker products of graphs , 2009, Appl. Math. Lett..

[16]  Petter Holme,et al.  Network bipartivity. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Tomislav Doslic,et al.  Computing the bipartite edge frustration of fullerene graphs , 2007, Discret. Appl. Math..

[18]  Sandi Klavžar,et al.  ON THE EDGE-CONNECTIVITY OF CARTESIAN PRODUCT GRAPHS , 2008 .

[19]  Yves Métivier,et al.  Some Remarks on the Kronecker Product of Graphs , 1998, Inf. Process. Lett..