Hydrogen-assisted crack propagation in α-iron during elasto-plastic fracture toughness tests

[1]  Yuhei Ogawa,et al.  Interpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wake , 2018, Acta Materialia.

[2]  Yuhei Ogawa,et al.  The role of intergranular fracture on hydrogen-assisted fatigue crack propagation in pure iron at a low stress intensity range , 2018, Materials Science and Engineering: A.

[3]  I. M. Robertson,et al.  Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel , 2018 .

[4]  Yuhei Ogawa,et al.  Multi-scale observation of hydrogen-induced, localized plastic deformation in fatigue-crack propagation in a pure iron , 2017 .

[5]  S. Matsuoka,et al.  Unified evaluation of hydrogen-induced crack growth in fatigue tests and fracture toughness tests of a carbon steel , 2017 .

[6]  S. Matsuoka,et al.  Hydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environment , 2017 .

[7]  I. M. Robertson,et al.  Influence of hydrogen on dislocation self-organization in Ni , 2017 .

[8]  N. Tsuji,et al.  Microstructural and crystallographic features of hydrogen-related fracture in lath martensitic steels , 2017 .

[9]  A. R. Troiano The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals , 2016, Metallography, Microstructure, and Analysis.

[10]  S. Matsuoka,et al.  Criteria for determining hydrogen compatibility and the mechanisms for hydrogen-assisted, surface crack growth in austenitic stainless steels , 2016 .

[11]  May L. Martin,et al.  Hydrogen-induced intergranular failure of iron , 2014 .

[12]  D. Caillard A TEM in situ study of alloying effects in iron. I—Solid solution softening caused by low concentrations of Ni, Si and Cr , 2013 .

[13]  D. Caillard A TEM in situ study of alloying effects in iron. II—Solid solution hardening caused by high concentrations of Si and Cr , 2013 .

[14]  A. Nagao,et al.  The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel , 2012 .

[15]  R. Srinivasan,et al.  Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding , 2012 .

[16]  M. Dadfarnia,et al.  The Relationship Between Crack-Tip Strain and Subcritical Cracking Thresholds for Steels in High-Pressure Hydrogen Gas , 2012, Metallurgical and Materials Transactions A.

[17]  May L. Martin,et al.  On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels , 2011 .

[18]  H. Noguchi,et al.  Investigation of the Mechanism for Brittle-Striation Formation in Low Carbon Steel Fatigued in Hydrogen Gas , 2011 .

[19]  S. Matsumoto,et al.  Atomistic simulations of hydrogen embrittlement , 2009 .

[20]  M. Nagumo,et al.  Lattice defects dominating hydrogen-related failure of metals , 2008 .

[21]  Brian P. Somerday,et al.  Technical Reference on Hydrogen Compatibility of Materials , 2008 .

[22]  S. Lynch Progression markings, striations, and crack-arrest markings on fracture surfaces , 2007 .

[23]  M. Nagumo Hydrogen related failure of steels – a new aspect , 2004 .

[24]  M. Nagumo,et al.  Amorphization associated with crack propagation in hydrogen-charged steel , 2003 .

[25]  D. Bammann,et al.  Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations , 2003 .

[26]  P. Ferreira,et al.  Hydrogen effects on the interaction between dislocations , 1998 .

[27]  P. Prangnell,et al.  Hydrogen-assisted stable crack growth in iron-3 wt% silicon steel , 1996 .

[28]  T. Marrow,et al.  MICROSTRUCTURAL AND ENVIRONMENTAL EFFECTS ON FATIGUE CRACK PROPAGATION IN DUPLEX STAINLESS STEELS , 1994 .

[29]  Y. Ohmori,et al.  Hydrogen crack initiation and propagation in pure iron single crystal , 1994 .

[30]  T. Marrow,et al.  Temperature effects on the mechanism of time independent hydrogen assisted fatigue crack propagation in steels , 1992 .

[31]  D. Kuhlmann-wilsdorf,et al.  Overview no. 96: Evolution of F.C.C. deformation structures in polyslip , 1992 .

[32]  W. Gerberich,et al.  The kinetics and micromechanics of hydrogen assisted cracking in Fe-3 pct Si single crystals , 1991 .

[33]  W. Gerberich,et al.  The role of stress state on hydrogen cracking in Fe-Si single crystals , 1990 .

[34]  Doris Kuhlmann-Wilsdorf,et al.  Theory of plastic deformation: - properties of low energy dislocation structures , 1989 .

[35]  S. Lynch Environmentally Assisted Cracking: Overview of Evidence for an Adsorption-Induced Localised-Slip Process, , 1988 .

[36]  A. Kimura,et al.  Hydrogen embrittlement in high purity iron single crystals , 1986 .

[37]  H. Birnbaum,et al.  Direct observations of hydrogen enhanced crack propagation in iron , 1984 .

[38]  H. Vehoff,et al.  Gaseous hydrogen embrittlement in FeSi- and Ni-single crystals , 1983 .

[39]  H. Birnbaum,et al.  Direct observations of the effect of hydrogen on the behavior of dislocations in iron , 1983 .

[40]  H. Vehoff,et al.  Crack propagation and cleavage initiation in Fe-2.6%-Si single crystals under controlled plastic crack tip opening rate in various gaseous environments , 1980 .

[41]  H. Matsui,et al.  The effect of hydrogen on the mechanical properties of high purity iron III. The dependence of softening in specimen size and charging current density , 1979 .

[42]  A. Inoue,et al.  Effect of Hydrogen on Crack Propagation Behavi or and Microstructures around Cracks in α-Iron , 1979 .

[43]  R. A. Oriani Hydrogen Embrittlement of Steels , 1978 .

[44]  A. Tetelman,et al.  Direct observation and analysis of crack propagation in iron-3% silicon single crystals☆ , 1963 .

[45]  J. Gilman Reduction of Cohesion in Ionic Crystals by Dislocations , 1961 .