Effect of Pressure on the Dielectric Properties of Ice I

The effect of pressure up to about 2 kbar on the dielectric properties of Ice I at − 23.4° has been measured. The static dielectric constant increases with increasing pressure by about the amount predicted by the Kirkwood theory. The increase in relaxation time yields a volume of activation for the relaxation process of 2.9±0.2 cm3 mole−1 which supports current views that dielectric relaxation occurs by rotation at orientational defects. The volume of activation given by the rapid rise of dc conductivity with increasing pressure is − 11±∼3 cm3 mole−1 which is consistent with the proton‐transfer mechanism.

[1]  D. Davidson,et al.  Dielectric Properties of Ices II, III, V, and VI , 1965 .

[2]  G. McDuffie,et al.  Effect of Pressure on the Viscosity and Dielectric Relaxation Time in Glycerol , 1964 .

[3]  E. Whalley,et al.  Vibrational Spectra of the Ices. Raman Spectra of Ice VI and Ice VII , 1964 .

[4]  E. Whalley,et al.  Infrared Spectra of Ices Ih and Ic in the Range 4000 to 350 cm—1 , 1964 .

[5]  M. Taylor,et al.  RAMAN SPECTRA OF ICES Ih, Ic, II, III, AND V , 1964 .

[6]  E. Whalley Some Comments on Electrostatic Volumes and Entropies of Solvation , 1963 .

[7]  L. D. Calvert,et al.  Transformations of Ice II, Ice III, and Ice V at Atmospheric Pressure , 1963 .

[8]  J. Koppelmann,et al.  Über die Druckabhängigkeit der Relaxationserscheinungen in hochpolymeren Stoffen , 1961 .

[9]  B. Post,et al.  Thermal expansion of ice , 1960 .

[10]  C. Swenson,et al.  Behavior of Polytetrafluoroethylene (Teflon) under High Pressures , 1959 .

[11]  H. S. Frank Covalency in the hydrogen bond and the properties of water and ice , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  M. Eigen,et al.  Self-dissociation and protonic charge transport in water and , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  J. W. Glen,et al.  The creep of polycrystalline ice , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  R. Cole,et al.  Dielectric Properties of Ice and Solid D2O , 1952 .

[15]  I. Jacobs,et al.  An Analysis of the Pressure Dependence of the Dielectric Constant of Polar Liquids , 1952 .

[16]  J. Powles A Calculation of the Static Dielectric Constant of Ice , 1951 .

[17]  D. E. Roberts,et al.  Volume-Temperature Relationships for the Room Temperature Transition in Teflon , 1951 .

[18]  J. Lamb,et al.  LETTERS TO THE EDITOR: The Dielectric Properties of Ice at 1.25 cm. Wavelength , 1949 .

[19]  M. Born Volumen und Hydratationswärme der Ionen , 1920 .

[20]  T. W. Richards,et al.  THE COMPRESSIBILITY OF ICE. , 1914 .

[21]  R. H. Wentorf,et al.  Advances in high pressure research , 1966 .

[22]  E. Whalley Use of Volumes of Activation for Determining Reaction Mechanisms , 1964 .

[23]  M. Eigen,et al.  Über das kinetische Verhalten von Protonen und Deuteronen in Eiskristallen , 1964 .

[24]  N. E. Hill,et al.  Interpretation of the dielectric properties of water , 1963 .

[25]  F. Heinmets,et al.  Conductivity measurements on pure ice , 1963 .

[26]  R. S. Bradley The electrical conductivity of ice , 1957 .

[27]  S. D. Hamann Physico-chemical effects of pressure , 1957 .

[28]  P. Drude,et al.  Über Elektrostriktion durch freie Ionen , 1894 .