Soil Moisture Active/Passive L-Band Microwave Radiometer Postlaunch Calibration

The Soil Moisture Active/Passive (SMAP) microwave radiometer is a fully polarimetric L-band radiometer flown on the SMAP satellite in a 6 a.m./6 p.m. sun-synchronous orbit at 685-km altitude. Since April 2015, the radiometer has been under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods, including the SMAP L1B TA2TB [from antenna temperature (TA) to the Earth’s surface brightness temperature (TB)] algorithm and TA forward models, are outlined, and validation approaches for calibration stability/quality are described in this paper, including future work. Results show that the current radiometer L1B data product (version 3) satisfies its requirements (uncertainty <1.3 K and calibration drift <0.4 K/months, and geolocation uncertainty <4 km) although there are biases in TA over cold sky and in TB comparing with the Soil Moisture and Ocean Salinity TB v620 data products.

[1]  Walter H. F. Smith,et al.  A global, self‐consistent, hierarchical, high‐resolution shoreline database , 1996 .

[2]  David M. Le Vine,et al.  Aquarius L-band Radiometers Calibration Using Cold Sky Observations , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[3]  Sidharth Misra,et al.  RFI detection and mitigation for microwave radiometry with an agile digital detector , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[5]  David G. Long,et al.  Stokes Antenna Temperatures , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[6]  D.M. Le Vine,et al.  Galactic noise and passive microwave remote sensing from space at L-band , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[7]  David M. Le Vine,et al.  Effects of the Antenna Aperture on Remote Sensing of Sea Surface Salinity at L-band. , 2007, 2006 IEEE MicroRad.

[8]  Yann Kerr,et al.  Assessment of the SMAP Passive Soil Moisture Product , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[9]  David M. Le Vine,et al.  Aquarius: An Instrument to Monitor Sea Surface Salinity From Space , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Simon Yueh,et al.  Estimates of Faraday rotation with passive microwave polarimetry for microwave remote sensing of Earth surfaces , 2000, IEEE Trans. Geosci. Remote. Sens..

[11]  David M. Le Vine,et al.  L-band radiometer calibration consistency assessment for the SMOS, SMAP and Aquarius instruments , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[12]  Wenqing Tang,et al.  L-Band Passive and Active Microwave Geophysical Model Functions of Ocean Surface Winds and Applications to Aquarius Retrieval , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Adriano Camps,et al.  Characterization of the SMOS Instrumental Error Pattern Correction Over the Ocean , 2012, IEEE Geoscience and Remote Sensing Letters.

[14]  Thomas Meissner,et al.  Geolocation and pointing accuracy analysis for the WindSat sensor , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Michael W. Spencer,et al.  SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[16]  David Kunkee,et al.  Geolocation Error Analysis of the Special Sensor Microwave Imager/Sounder , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Ignasi Corbella,et al.  SMOS Calibration , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Huan Meng,et al.  Correcting Geolocation Errors for Microwave Instruments Aboard NOAA Satellites , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Joel T. Johnson,et al.  SMAP L-Band Microwave Radiometer: RFI Mitigation Prelaunch Analysis and First Year On-Orbit Observations , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[20]  W. Linwood Jones,et al.  The WindSat spaceborne polarimetric microwave radiometer: sensor description and early orbit performance , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Li Li,et al.  Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz , 1999, IEEE Trans. Geosci. Remote. Sens..

[22]  David Draper,et al.  Global precipitation measurement microwave imager (GMI) On-orbit calibration , 2016, 2016 14th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad).

[23]  Yahya Rahmat-Samii,et al.  Deployable Mesh Reflector Antennas for Space Applications: RF Characterizations , 2012 .

[24]  David M. Le Vine,et al.  The Aquarius Simulator and Cold-Sky Calibration , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Heidrun Wiebe,et al.  Geolocation of AMSR-E Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Philippe Richaume,et al.  SMOS Radiometer in the 1400–1427-MHz Passive Band: Impact of the RFI Environment and Approach to Its Mitigation and Cancellation , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Yann Kerr,et al.  Temperature- and Texture-Dependent Dielectric Model for Moist Soils at 1.4 GHz , 2013, IEEE Geoscience and Remote Sensing Letters.

[28]  Jinzheng Peng,et al.  Global Simplified Atmospheric Radiative Transfer Model at L-Band , 2013, IEEE Geoscience and Remote Sensing Letters.