Stellar binaries in galactic nuclei: tidally stimulated mergers followed by tidal disruptions

We investigate interactions of stellar binaries in galactic nuclear clusters with a massive black hole (MBH). We consider binaries on highly eccentric orbits around the MBH that change due to random gravitational interactions with other stars in the nuclear stellar cluster. The pericenters of the orbits perform a random walk, and we consider cases where this random walk slowly brings the binary to the Hills tidal separation radius (the so-called empty loss-cone regime). However, we find that in a majority of cases the expected separation does not occur and instead the members of the binary merge together. This happens because the binary's eccentricity is excited by tidal interactions with the MBH, and the relative excursions of the internal eccentricity of the binary far exceed those in its internal semimajor axis. This frequently reduces the pericenter separation to values below typical stellar diameters, which induces a significant fraction of such binaries to merge ($\gtrsim 75\%$ in our set of numerical experiments). Stellar tides do not appreciably change the total rate of mergers but circularise binaries, leading to a significant fraction of low-eccentricity, low-impact-velocity mergers. Some of the stellar merger products will then be tidally disrupted by the MBH within $\sim 10^6$ years. If the merger strongly enhances the magnetic field of the merger product, this process could explain observations of prompt relativistic jet formation in some tidal disruption events.

[1]  Daniel J. Price,et al.  Magnetic field evolution in tidal disruption events , 2016, 1611.09853.

[2]  M. Cacciato,et al.  Joint constraints on the Galactic dark matter halo and Galactic Centre from hypervelocity stars , 2016, 1608.02000.

[3]  J. Guillochon,et al.  Simulations of Magnetic Fields in Tidally Disrupted Stars , 2016, 1609.08160.

[4]  A. Ghez,et al.  Merging Binaries in the Galactic Center: The eccentric Kozai-Lidov mechanism with stellar evolution , 2016, 1603.02709.

[5]  Daniel J. Price,et al.  Disc formation from tidal disruptions of stars on eccentric orbits by Schwarzschild black holes , 2015, 1501.04635.

[6]  J. Antognini Timescales of Kozai-Lidov oscillations at quadrupole and octupole order in the test particle limit , 2015, 1504.05957.

[7]  Y. Levin,et al.  DOUBLE TIDAL DISRUPTIONS IN GALACTIC NUCLEI , 2015, 1504.02787.

[8]  M. V. Kerkwijk,et al.  MAGNETIZED MOVING MESH MERGER OF A CARBON–OXYGEN WHITE DWARF BINARY , 2015, 1504.01732.

[9]  T. Piran,et al.  GENERAL RELATIVISTIC HYDRODYNAMIC SIMULATION OF ACCRETION FLOW FROM A STELLAR TIDAL DISRUPTION , 2015, 1501.04365.

[10]  A. Beloborodov,et al.  Black hole jets without large-scale net magnetic flux , 2014, 1410.0374.

[11]  Hanno Rein,et al.  ias15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits , 2014, 1409.4779.

[12]  H. Perets,et al.  SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS , 2014, 1405.6029.

[13]  J. Prieto,et al.  ASASSN-14ae: a tidal disruption event at 200 Mpc , 2014, 1405.1417.

[14]  Adam A. Miller,et al.  A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES , 2014, 1405.1415.

[15]  C. Tout,et al.  The Most Magnetic Stars , 2013, 1310.2696.

[16]  E. Rossi,et al.  THE VELOCITY DISTRIBUTION OF HYPERVELOCITY STARS , 2013, 1307.1134.

[17]  Columbia,et al.  Swift J1644+57 gone MAD: the case for dynamically-important magnetic flux threading the black hole in a jetted tidal disruption event , 2013, 1301.1982.

[18]  S. Gezari,et al.  THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT , 2013, 1309.3009.

[19]  C. Matzner,et al.  EVOLUTION OF ACCRETION DISKS IN TIDAL DISRUPTION EVENTS , 2013, 1305.5570.

[20]  O. H. Ramírez-Agudelo,et al.  The VLT-FLAMES Tarantula Survey IV: Candidates for isolated high-mass star formation in 30 Doradus , 2012, 1204.3628.

[21]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[22]  J. Guillochon,et al.  THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION , 2012, 1206.2922.

[23]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[24]  E. Rossi,et al.  HYPER VELOCITY STARS AND THE RESTRICTED PARABOLIC 3-BODY PROBLEM , 2012 .

[25]  H. Rein,et al.  REBOUND: An open-source multi-purpose N-body code for collisional dynamics , 2011, 1110.4876.

[26]  P. Giommi,et al.  Relativistic jet activity from the tidal disruption of a star by a massive black hole , 2011, Nature.

[27]  Ryan Chornock,et al.  Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451 , 2011, Nature.

[28]  M. Meyer,et al.  BINARY FORMATION MECHANISMS: CONSTRAINTS FROM THE COMPANION MASS RATIO DISTRIBUTION , 2011, 1106.3064.

[29]  E. O. Ofek,et al.  An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy , 2011, Science.

[30]  Nathaniel R. Butler,et al.  A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star , 2011, Science.

[31]  Brian D. Metzger,et al.  Radio transients from stellar tidal disruption by massive black holes , 2011, 1102.1429.

[32]  Andrew J. Drake,et al.  OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES , 2010, 1009.1627.

[33]  D. Merritt,et al.  TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER. II. HYDRODYNAMIC SIMULATIONS , 2010, 1008.5369.

[34]  E. Rossi,et al.  HYPERVELOCITY STARS AND THE RESTRICTED PARABOLIC THREE-BODY PROBLEM , 2009, 0911.1136.

[35]  J. Faber,et al.  TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER AND ITS CONSEQUENCES , 2009, 0909.1959.

[36]  E. Quataert,et al.  Optical Flares from the Tidal Disruption of Stars by Massive Black Holes , 2009, Proceedings of the International Astronomical Union.

[37]  S. Gezari,et al.  LUMINOUS THERMAL FLARES FROM QUIESCENT SUPERMASSIVE BLACK HOLES , 2009, 0904.1596.

[38]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[39]  S. Zwart,et al.  Three-body encounters in the Galactic Centre: the origin of the hypervelocity star SDSS J090745.0+024507 , 2005, astro-ph/0507365.

[40]  M. Miller,et al.  Binary Encounters with Supermassive Black Holes: Zero-Eccentricity LISA Events , 2005, astro-ph/0507133.

[41]  Michael J. Kurtz,et al.  Submitted to ApJ Letters , 1996 .

[42]  H. Spruit,et al.  A fossil origin for the magnetic field in A stars and white dwarfs , 2004, Nature.

[43]  G. Hasinger,et al.  A Huge Drop in the X-Ray Luminosity of the Nonactive Galaxy RX J1242.6–1119A, and the First Postflare Spectrum: Testing the Tidal Disruption Scenario , 2004, astro-ph/0402468.

[44]  R. Della Ceca,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[45]  P. Martini,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[46]  S. Tremaine,et al.  Ejection of Hypervelocity Stars by the (Binary) Black Hole in the Galactic Center , 2003, astro-ph/0309084.

[47]  A. Gould,et al.  Sagittarius A* Companion S0-2: A Probe of Very High Mass Star Formation , 2003, astro-ph/0302437.

[48]  Peter P. Eggleton,et al.  Orbital Evolution in Binary and Triple Stars, with an Application to SS Lacertae , 2001, astro-ph/0104126.

[49]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[50]  S. Tremaine,et al.  Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.

[51]  Peter P. Eggleton,et al.  The Equilibrium Tide Model for Tidal Friction , 1998, astro-ph/9801246.

[52]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[53]  Mark R. Morris,et al.  The center of the galaxy , 1989 .

[54]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[55]  J. Hills,et al.  Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole , 1988, Nature.

[56]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[57]  W. H. Press,et al.  On formation of close binaries by two-body tidal capture , 1977 .

[58]  S. Shapiro,et al.  The distribution and consumption rate of stars around a massive, collapsed object , 1977 .

[59]  Martin J. Rees,et al.  Tidal capture formation of binary systems and X-ray sources in globular clusters. , 1975 .

[60]  Stuart L. Shapiro,et al.  Random Gravitational Encounters and the Evolution of Spherical Systems. III. Halo , 1971 .

[61]  M. L. Lidov The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies , 1962 .

[62]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .