Characterization of Plenoptic Imaging Systems and Efficient Volumetric Estimation From Plenoptic Data

Light-field cameras in conjunction with computational refocusing can be used to produce volumetric estimates of an imaged scene. However, these estimates are often dominated by image blur in the depth direction from objects not in each synthesized focal plane. Tomographic algorithms have been shown to be effective in creating volumetric estimates from plenoptic data but are often prohibitively slow. Deconvolution would be an attractive solution due to processing speed, but existing image synthesis equations are shift-variant. This research proposes an alternate refocusing transformation that makes the core problem described in continuous coordinates shift-invariant so that deconvolution is a viable solution. Shift-invariance of the new refocusing transform is demonstrated mathematically. Furthermore, the discretization involved in the imaging system and refocusing algorithm are characterized with respect to shift-variance in order to identify potential sources of artifacts and to propose potential mitigating steps where possible. While the sampled light field is not directly invertible, experimental data are used to demonstrate that regularized deconvolution using the derived synthesis equations produces improved results compared to the base focal stack in both synthetic examples and actual camera data.

[1]  A. Dreizler,et al.  New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics , 2011 .

[2]  Ivo Ihrke,et al.  Principles of Light Field Imaging: Briefly revisiting 25 years of research , 2016, IEEE Signal Processing Magazine.

[3]  Brian S. Thurow,et al.  Efficient volumetric estimation from plenoptic data , 2013, Electronic Imaging.

[4]  Ronald K. Hanson,et al.  Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems , 2011 .

[5]  Hans Burkhardt,et al.  Three-dimensional temperature measurement in flames by multispectral tomographic image analysis , 1990, Optics & Photonics.

[6]  Hans Burkhardt,et al.  Spatially-variant Lucy-Richardson deconvolution for multiview fusion of microscopical 3D images , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[7]  David Salesin,et al.  Spatio-angular resolution tradeoffs in integral photography , 2006, EGSR '06.

[8]  Brian S. Thurow,et al.  Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV , 2016 .

[9]  P. Hanrahan,et al.  Digital light field photography , 2006 .

[10]  Wenxing Fu,et al.  Implementing light field image refocusing algorithm , 2015, 2015 2nd International Conference on Opto-Electronics and Applied Optics (IEM OPTRONIX).

[11]  Bernhard Wieneke,et al.  Tomographic 3D-PIV and Applications , 2007 .

[12]  P. Hanrahan,et al.  Light Field Photography with a Hand-held Plenoptic Camera , 2005 .

[13]  Edward H. Adelson,et al.  Single Lens Stereo with a Plenoptic Camera , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[15]  Fulvio Scarano,et al.  Advances in iterative multigrid PIV image processing , 2000 .

[16]  Noel T. Clemens,et al.  Planar imaging of CH, OH, and velocity in turbulent non-premixed jet flames , 2002 .

[17]  Yong Yan,et al.  A new edge detection algorithm for flame image processing , 2011, 2011 IEEE International Instrumentation and Measurement Technology Conference.

[18]  Clemens F. Kaminski,et al.  Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames , 2002 .

[19]  Eric A. Deem,et al.  On the resolution of plenoptic PIV , 2016 .

[20]  F. Scarano Iterative image deformation methods in PIV , 2002 .

[21]  Brian S. Thurow,et al.  3D Particle Position Reconstruction Accuracy in Plenoptic PIV , 2014 .

[22]  Andrew Lumsdaine,et al.  Resolution in Plenoptic Cameras , 2009 .

[23]  Ren Ng Fourier Slice Photography , 2005 .

[24]  Campbell D. Carter,et al.  Scalar and velocity field measurements in a lifted CH4–air diffusion flame , 1999 .

[25]  Klaus D. Hinsch REVIEW ARTICLE: Holographic particle image velocimetry , 2002 .

[26]  Yong Yan,et al.  Three-dimensional reconstruction of combustion flames through optical fiber sensing and CCD imaging , 2011, 2011 IEEE International Instrumentation and Measurement Technology Conference.

[27]  Marc Levoy,et al.  High performance imaging using large camera arrays , 2005, SIGGRAPH 2005.

[28]  Jun Sakakibara,et al.  High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids , 2004 .

[29]  Qionghai Dai,et al.  Light Field Image Processing: An Overview , 2017, IEEE Journal of Selected Topics in Signal Processing.

[30]  J. Westerweel,et al.  Particle Image Velocimetry for Complex and Turbulent Flows , 2013 .

[31]  M. Landy,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[32]  Alexandra H. Techet,et al.  Three-dimensional synthetic aperture particle image velocimetry , 2010 .

[33]  Lin Ma,et al.  Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy. , 2009, Optics express.

[34]  Francisco Pereira,et al.  Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows , 2000 .

[35]  Aaron S. Andalman,et al.  Wave optics theory and 3-D deconvolution for the light field microscope. , 2013, Optics express.

[36]  Brian S. Thurow,et al.  Recent Development of Volumetric PIV with a Plenoptic Camera , 2013 .

[37]  R. Howe,et al.  Flow Visualization in Combustion Gases Using Nitric Oxide Fluorescence , 1984 .

[38]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[39]  Kyle P. Lynch Development of a 3-D Fluid Velocimetry Technique based on Light Field Imaging , 2011 .

[40]  Jeffrey Bolan,et al.  Light-Field Imaging Toolkit , 2016, SoftwareX.

[41]  T. Fahringer,et al.  The E ect of Grid Resolution on the Accuracy of Tomographic Reconstruction Using a Plenoptic Camera , 2013 .

[42]  Brian S. Thurow,et al.  3-D flow visualization of axisymmetric jets at Reynolds number 6,700 and 10,200 , 2012, J. Vis..

[43]  Robert P Lucht,et al.  High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion. , 2014, Applied optics.

[44]  Gang Lu,et al.  Three-dimensional visualization and quantitative characterization of gaseous flames , 2002 .

[45]  Marc Levoy,et al.  Synthetic Aperture Focusing using a Shear-Warp Factorization of the Viewing Transform , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[46]  Brian S. Thurow,et al.  Tomographic Reconstruction of a 3-D Flow Field Using a Plenoptic Camera , 2012 .

[47]  Marc Levoy The Digital Michelangelo Project , 1999, Comput. Graph. Forum.

[48]  Andrew Lumsdaine,et al.  The focused plenoptic camera , 2009, 2009 IEEE International Conference on Computational Photography (ICCP).

[49]  Marc Levoy,et al.  Light Fields and Computational Imaging , 2006, Computer.

[50]  Ofer Levi,et al.  Fast and exact method for computing a stack of images at various focuses from a four-dimensional light field , 2016, J. Electronic Imaging.

[51]  T. Fahringer,et al.  Volumetric particle image velocimetry with a single plenoptic camera , 2015 .

[52]  Christian Willert,et al.  Particle image velocimetry : new developments and recent applications , 2008 .

[53]  Christoph Brücker,et al.  Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM) , 2013 .

[54]  M. Levoy,et al.  Light field microscopy , 2006, SIGGRAPH 2006.

[55]  Markus Raffel,et al.  Particle Image Velocimetry: A Practical Guide , 2002 .

[56]  J. Sibarita Deconvolution microscopy. , 2005, Advances in biochemical engineering/biotechnology.