Electrochemical Modeling of Commercial LiFePO4 and Graphite Electrodes: Kinetic and Transport Properties and Their Temperature Dependence

[1]  Ehsan Samadani,et al.  Three-dimensional Multi-Particle Electrochemical Model of LiFePO4 Cells based on a Resistor Network Methodology , 2016 .

[2]  Sang Chul Lee,et al.  Effects of Particle Size, Electronic Connectivity, and Incoherent Nanoscale Domains on the Sequence of Lithiation in LiFePO4 Porous Electrodes , 2015, Advanced materials.

[3]  M. Fowler,et al.  Three-Dimensional Electrochemical Analysis of a Graphite/LiFePO 4 Li-Ion Cell to Improve Its Durability , 2015 .

[4]  Siamak Farhad,et al.  Simplified Electrochemical Multi-Particle Model for LiFePO4 Cathodes in Lithium-Ion Batteries , 2015 .

[5]  Mohammadhosein Safari,et al.  Mesoscopic modeling of Li insertion in phase-separating electrode materials: application to lithium iron phosphate. , 2014, Physical chemistry chemical physics : PCCP.

[6]  J. H. Park,et al.  Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles , 2014 .

[7]  Peng Bai,et al.  Charge transfer kinetics at the solid–solid interface in porous electrodes , 2014, Nature Communications.

[8]  Eiji Tatsukawa,et al.  Activity correction on electrochemical reaction and diffusion in lithium intercalation electrodes for discharge/charge simulation by single particle model , 2014 .

[9]  Taeyoung Han,et al.  Full-Range Simulation of a Commercial LiFePO4 Electrode Accounting for Bulk and Surface Effects: A Comparative Analysis , 2014 .

[10]  Taeyoung Han,et al.  Simulation of lithium iron phosphate lithiation/delithiation: Limitations of the core–shell model , 2014 .

[11]  Fangming Jiang,et al.  Thermal analyses of LiFePO4/graphite battery discharge processes , 2013 .

[12]  K. Jalkanen,et al.  Entropy change effects on the thermal behavior of a LiFePO4/graphite lithium-ion cell at different states of charge , 2013 .

[13]  A. Boulineau,et al.  Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction. , 2013, ACS nano.

[14]  E. Ivers-Tiffée,et al.  A novel method for measuring the effective conductivity and the contact resistance of porous electrodes for lithium-ion batteries , 2013 .

[15]  Steven Dargaville,et al.  The persistence of phase-separation in LiFePO4 with two-dimensional Li+ transport : the Cahn-Hilliard-reaction equation and the role of defects , 2013 .

[16]  Kyle R Fenton,et al.  Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. , 2013, Nano letters.

[17]  J. Christensen,et al.  An Efficient Parallelizable 3D Thermoelectrochemical Model of a Li-Ion Cell , 2013 .

[18]  M. Hess,et al.  Shrinking annuli mechanism and stage-dependent rate capability of thin-layer graphite electrodes for lithium-ion batteries , 2012 .

[19]  Yuki Yamada,et al.  Kinetics of Nucleation and Growth in Two-Phase Electrochemical Reaction of LixFePO4 , 2012 .

[20]  M. Verbrugge,et al.  Intercalate Diffusion in Multiphase Electrode Materials and Application to Lithiated Graphite , 2012 .

[21]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[22]  A. Jansen,et al.  A Volume Averaged Approach to the Numerical Modeling of Phase-Transition Intercalation Electrodes Presented for LixC6 , 2012 .

[23]  J. Bernard,et al.  Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications , 2012 .

[24]  E. F. Rauch,et al.  Confirmation of the domino-cascade model by lifepo4/fepo 4 precession electron diffraction , 2011 .

[25]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[26]  Mohammadhosein Safari,et al.  Modeling of a Commercial Graphite/LiFePO4 Cell , 2011 .

[27]  M. Safari,et al.  Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence , 2011 .

[28]  Ralph E. White,et al.  Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior , 2011 .

[29]  Dawn Bernardi,et al.  Analysis of pulse and relaxation behavior in lithium-ion batteries , 2011 .

[30]  Karim Zaghib,et al.  Understanding Rate-Limiting Mechanisms in LiFePO4 Cathodes for Li-Ion Batteries , 2011 .

[31]  Charles Delacourt,et al.  Mathematical Modeling of Commercial LiFePO4 Electrodes Based on Variable Solid-State Diffusivity , 2011 .

[32]  Venkatasailanathan Ramadesigan,et al.  Coordinate Transformation, Orthogonal Collocation, Model Reformulation and Simulation of Electrochemical-Thermal Behavior of Lithium-Ion Battery Stacks , 2011 .

[33]  W. Craig Carter,et al.  Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes , 2010 .

[34]  Steven Dargaville,et al.  Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model , 2010 .

[35]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[36]  V. O. Sycheva,et al.  Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques , 2010 .

[37]  Weifeng Fang,et al.  Electrochemical–thermal modeling of automotive Li‐ion batteries and experimental validation using a three‐electrode cell , 2010 .

[38]  Yoshihiro Yamada,et al.  Open-circuit voltage study on LiFePO4 olivine cathode , 2009 .

[39]  Ji‐Guang Zhang,et al.  Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries , 2009 .

[40]  V. Subramanian,et al.  Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions , 2009 .

[41]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[42]  Indrajeet Vilasrao Thorat Understanding Performance--Limiting Mechanisms in Li-ION Batteries for High-Rate Applications , 2009 .

[43]  Ralph E. White,et al.  Thermodynamic model development for lithium intercalation electrodes , 2008 .

[44]  Pedro E. Arce,et al.  Discharge Model for LiFePO4 Accounting for the Solid Solution Range , 2008 .

[45]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[46]  T. R. Jow,et al.  Analysis of the FePO4 to LiFePO4 phase transition , 2008 .

[47]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[48]  Ho Jang,et al.  Asymmetry between charge and discharge during high rate cycling in LiFePO4 – In Situ X-ray diffraction study , 2008 .

[49]  Ralph E. White,et al.  Thermal Model for a Li-Ion Cell , 2008 .

[50]  T. Brousse,et al.  Silicon/graphite nanocomposite electrodes prepared by low pressure chemical vapor deposition , 2007 .

[51]  Pedro E. Arce,et al.  A Discharge Model for Phase Transformation Electrodes: Formulation, Experimental Validation, and Analysis , 2007 .

[52]  Shin Fujitani,et al.  Study of LiFePO4 by Cyclic Voltammetry , 2007 .

[53]  Jeff Wolfenstine,et al.  Kinetic Study of the Electrochemical FePO 4 to LiFePO 4 Phase Transition , 2007 .

[54]  Christian Masquelier,et al.  Size Effects on Carbon-Free LiFePO4 Powders The Key to Superior Energy Density , 2006 .

[55]  Masao Yonemura,et al.  Room-temperature miscibility gap in LixFePO4 , 2006, Nature materials.

[56]  T. L. Kulova,et al.  Temperature effect on the lithium diffusion rate in graphite , 2006 .

[57]  Venkat Srinivasan,et al.  Existence of path-dependence in the LiFePO4 electrode , 2006 .

[58]  Yvan Reynier,et al.  Thermodynamics and crystal structure anomalies in lithium-intercalated graphite , 2006 .

[59]  Ralph E. White,et al.  A New Kinetic Equation for Intercalation Electrodes , 2006 .

[60]  I. Barsukov New carbon based materials for electrochemical energy storage systems : batteries, supercapacitors and fuel cells , 2006 .

[61]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[62]  Michael Holzapfel,et al.  High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries , 2005 .

[63]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[64]  B. Fultz,et al.  Thermodynamics of Lithium Intercalation into Graphites and Disordered Carbons , 2004 .

[65]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[66]  J. Newman,et al.  Heats of mixing and of entropy in porous insertion electrodes , 2003 .

[67]  Brent Fultz,et al.  The entropy and enthalpy of lithium intercalation into graphite , 2003 .

[68]  M. Verbrugge,et al.  Electrochemical analysis of lithiated graphite anodes , 2003 .

[69]  J. Newman,et al.  Thermal Modeling of Porous Insertion Electrodes , 2003 .

[70]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[71]  Yoji Sakurai,et al.  Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries , 2002 .

[72]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[73]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[74]  Ralph E. White,et al.  Influence of Some Design Variables on the Thermal Behavior of a Lithium‐Ion Cell , 1999 .

[75]  A. M. Skundin,et al.  The effect of temperature on lithium intercalation into carbon materials , 1998 .

[76]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[77]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[78]  Michikazu Hara,et al.  Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries , 1995 .

[79]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[80]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[81]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .