Optically reconfigurable magnetic materials

The periodic modulation of the magnetic properties of magnonic crystals controls the flow of spin waves. An optical method is now shown that can produce such modulations by heating, which can be reprogrammed during operation. Structuring of materials is the most general approach for controlling waves in solids. As spin waves—eigen-excitations of the electrons’ spin system—are free from Joule heating, they are of interest for a range of applications, such as processing1,2,3,4,5, filtering6,7,8 and short-time data storage9. Whereas all these applications rely on predefined constant structures, a dynamic variation of the structures would provide additional, novel applications. Here, we present an approach for producing fully tunable, two-dimensionally structured magnetic materials. Using a laser, we create thermal landscapes in a magnetic medium that result in modulations of the saturation magnetization and in the control of spin-wave characteristics. This method is demonstrated by the realization of fully reconfigurable one- and two-dimensional magnonic crystals—artificial periodic magnetic lattices.

[1]  H. Ulrichs,et al.  The building blocks of magnonics , 2011, 1101.0479.

[2]  Jiang Xiao,et al.  Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures , 2013, 1306.4292.

[3]  S. Maekawa,et al.  Observation of the spin Seebeck effect , 2008, Nature.

[4]  R. Moriya,et al.  Directional control of spin-wave emission by spatially shaped light , 2012, Nature Photonics.

[5]  B. V. van Wees,et al.  Spin caloritronics. , 2011, Nature materials.

[6]  T. U. Dresden,et al.  Microscopic magnetic structuring of a spin-wave waveguide by ion implantation in a Ni81Fe19 layer , 2012, 1211.4786.

[7]  Kyung-Jin Lee,et al.  Spin wave nonreciprocity for logic device applications , 2013, Scientific Reports.

[8]  M. Kostylev,et al.  Scattering of backward spin waves in a one-dimensional magnonic crystal , 2008, 0805.4142.

[9]  Andrii V. Chumak,et al.  All-linear time reversal by a dynamic artificial crystal , 2010, Nature communications.

[10]  Kang L. Wang,et al.  Magnonic logic circuits , 2010 .

[11]  M. Kostylev,et al.  A current-controlled, dynamic magnonic crystal , 2009, 0904.0332.

[12]  M. Kostylev,et al.  Realization of spin-wave logic gates , 2007, 0711.4720.

[13]  J Leuthold,et al.  Nanomagnonic devices based on the spin-transfer torque. , 2014, Nature nanotechnology.

[14]  R. Pisarev,et al.  Nonthermal optical control of magnetism and ultrafast laser-induced spin dynamics in solids , 2007 .

[15]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[16]  A. Serga,et al.  Magnon transistor for all-magnon data processing , 2014, Nature Communications.

[17]  T. Rasing,et al.  Ultrafast optical manipulation of magnetic order , 2010 .

[18]  M. Kostylev,et al.  Making a reconfigurable artificial crystal by ordering bistable magnetic nanowires. , 2010, Physical review letters.

[19]  D. Grundler,et al.  Magnonics: Spin Waves on the Nanoscale , 2009 .

[20]  M. Kostylev,et al.  Realization of a mesoscopic reprogrammable magnetic logic based on a nanoscale reconfigurable magnonic crystal , 2012 .

[21]  A. Serga,et al.  Spin-wave propagation and transformation in a thermal gradient , 2012, 1211.5017.

[22]  M. Wegener,et al.  Periodic nanostructures for photonics , 2007 .

[23]  R. Pisarev,et al.  Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses , 2005, Nature.

[24]  S. Rezende,et al.  Thermal properties of magnons and the spin Seebeck effect in yttrium iron garnet/normal metal hybrid structures , 2014 .

[25]  J. Pearson,et al.  Realization of a spin-wave multiplexer , 2014, Nature Communications.

[26]  M. Cinchetti,et al.  Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. , 2010, Nature materials.

[27]  Daniel D. Stancil,et al.  Spin Waves: Theory and Applications , 2009 .

[28]  M. Krawczyk,et al.  Review and prospects of magnonic crystals and devices with reprogrammable band structure , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  Georg von Freymann,et al.  Multi foci with diffraction limited resolution. , 2013, Optics express.

[30]  Hans Peter Herzig,et al.  Review of iterative Fourier-transform algorithms for beam shaping applications , 2004 .

[31]  M. Kostylev,et al.  Brillouin light scattering studies of planar metallic magnonic crystals , 2010, 1004.1881.

[32]  E. Thomas,et al.  Micro‐/Nanostructured Mechanical Metamaterials , 2012, Advanced materials.

[33]  B. Leven,et al.  Design of a spin-wave majority gate employing mode selection , 2014, 1408.3235.