Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals.

Industrial biomining processes to extract copper, gold and other metals involve the use of extremophiles such as the acidophilic Acidithiobacillus ferrooxidans (Bacteria), and the thermoacidophilic Sulfolobus metallicus (Archaea). Together with other extremophiles these microorganisms subsist in habitats where they are exposed to copper concentrations higher than 100mM. Herein we review the current knowledge on the Cu-resistance mechanisms found in these microorganisms. Recent information suggests that biomining extremophiles respond to extremely high Cu concentrations by using simultaneously all or most of the following key elements: 1) a wide repertoire of Cu-resistance determinants; 2) duplication of some of these Cu-resistance determinants; 3) existence of novel Cu chaperones; 4) a polyP-based Cu-resistance system, and 5) an oxidative stress defense system. Further insight of the biomining community members and their individual response to copper is highly relevant, since this could provide key information to the mining industry. In turn, this information could be used to select the more fit members of the bioleaching community to attain more efficient industrial biomining processes.

[1]  E. Bini,et al.  Response to excess copper in the hyperthermophile Sulfolobus solfataricus strain 98/2. , 2009, Biochemical and biophysical research communications.

[2]  V. Harwood,et al.  Regulation of extracellular copper-binding proteins in copper-resistant and copper-sensitive mutants of Vibrio alginolyticus , 1994, Applied and environmental microbiology.

[3]  C. Rensing,et al.  Escherichia coli mechanisms of copper homeostasis in a changing environment. , 2003, FEMS microbiology reviews.

[4]  K B Hallberg,et al.  Biodiversity of acidophilic prokaryotes. , 2001, Advances in applied microbiology.

[5]  O. Carmel-Harel,et al.  Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. , 2000, Annual review of microbiology.

[6]  K. Stetter,et al.  Metallosphaera sedula gen, and sp. nov. Represents a New Genus of Aerobic, Metal-Mobilizing, Thermoacidophilic Archaebacteria , 1989 .

[7]  J. Keasling Regulation of Intracellular Toxic Metals and Other Cations by Hydrolysis of Polyphosphate , 1997, Annals of the New York Academy of Sciences.

[8]  P. Rich,et al.  Two Menkes-type ATPases Supply Copper for Photosynthesis inSynechocystis PCC 6803* , 2001, The Journal of Biological Chemistry.

[9]  F. A. Perrot,et al.  Metals tolerance in moderately thermophilic isolates from a spent copper sulfide heap, closely related to Acidithiobacillus caldus, Acidimicrobium ferrooxidans and Sulfobacillus thermosulfidooxidans , 2009, Journal of Industrial Microbiology & Biotechnology.

[10]  J. Imlay Cellular defenses against superoxide and hydrogen peroxide. , 2008, Annual review of biochemistry.

[11]  H. Hippe Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). , 2000, International journal of systematic and evolutionary microbiology.

[12]  M. Maher,et al.  Intermolecular transfer of copper ions from the CopC protein of Pseudomonas syringae. Crystal structures of fully loaded Cu(I)Cu(II) forms. , 2006, Journal of the American Chemical Society.

[13]  C. Rensing,et al.  Molecular Analysis of the Copper-Transporting Efflux System CusCFBA of Escherichia coli , 2003, Journal of bacteriology.

[14]  Jillian F Banfield,et al.  Microbial communities in acid mine drainage. , 2003, FEMS microbiology ecology.

[15]  D. Holmes,et al.  Aspects of the predicted physiology of Acidithiobacillus ferrooxidans deduced from an analysis of its partial genome sequence , 2003 .

[16]  D. Rawlings,et al.  Molecular Relationship between Two Groups of the Genus Leptospirillum and the Finding that Leptospirillum ferriphilum sp. nov. Dominates South African Commercial Biooxidation Tanks That Operate at 40°C , 2002, Applied and Environmental Microbiology.

[17]  Chi‐Huey Wong,et al.  The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  G. Olson,et al.  Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. , 2003, Applied microbiology and biotechnology.

[19]  M. McEvoy,et al.  A novel copper-binding fold for the periplasmic copper resistance protein CusF. , 2005, Biochemistry.

[20]  E. Pedone,et al.  Sensing and adapting to environmental stress: the archaeal tactic. , 2004, Frontiers in bioscience : a journal and virtual library.

[21]  M. Solioz,et al.  How Bacteria Handle Copper , 2007 .

[22]  S. Silver,et al.  Bacterial heavy metal resistance: new surprises. , 1996, Annual review of microbiology.

[23]  C. Baker-Austin,et al.  Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. , 2003, Microbiology.

[24]  C. Jerez,et al.  Proteomic and genomic analysis of the phosphate starvation response of Acidithiobacillus ferrooxidans , 2003 .

[25]  W. Sand,et al.  Bioleaching review part A: , 2003, Applied Microbiology and Biotechnology.

[26]  M. Parsek,et al.  Survival and Growth in the Presence of Elevated Copper: Transcriptional Profiling of Copper-Stressed Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[27]  C. Baker-Austin,et al.  Life in acid: pH homeostasis in acidophiles. , 2007, Trends in microbiology.

[28]  M. Solioz,et al.  Copper homeostasis in Enterococcus hirae. , 1999, Advances in experimental medicine and biology.

[29]  L. Orellana,et al.  Transcriptional and Functional Studies of Acidithiobacillus ferrooxidans Genes Related to Survival in the Presence of Copper , 2009, Applied and Environmental Microbiology.

[30]  J. Robison-Cox,et al.  Something Old, Something New, Something Borrowed; How the Thermoacidophilic Archaeon Sulfolobus solfataricus Responds to Oxidative Stress , 2009, PloS one.

[31]  P. Norris,et al.  Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. , 1996, Microbiology.

[32]  D. Rawlings,et al.  Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates , 2005, Microbial cell factories.

[33]  S. Farr,et al.  Oxidative stress responses in Escherichia coli and Salmonella typhimurium. , 1991, Microbiological reviews.

[34]  M. Nakasako,et al.  Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution , 2000, Nature.

[35]  T. O’Halloran,et al.  Cu(I) recognition via cation-pi and methionine interactions in CusF. , 2008, Nature chemical biology.

[36]  K. Stetter,et al.  Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic Archaeum, isolated from a uranium mine in Germany , 1995 .

[37]  M. Seufferheld,et al.  Role of Polyphosphates in Microbial Adaptation to Extreme Environments , 2008, Applied and Environmental Microbiology.

[38]  D. Kelly,et al.  Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. , 2000, International journal of systematic and evolutionary microbiology.

[39]  K. Stetter,et al.  16S rDNA-based Phylogeny of the Archaeal Order Sulfolobales and Reclassification of Desulfurolobus a , 1996 .

[40]  J. Mobarec,et al.  Identification of putative sulfurtransferase genes in the extremophilic Acidithiobacillus ferrooxidans ATCC 23270 genome: structural and functional characterization of the proteins. , 2005, Omics : a journal of integrative biology.

[41]  R. Siezen,et al.  Bioleaching genomics , 2009, Microbial biotechnology.

[42]  Helen R. Watling,et al.  The bioleaching of sulphide minerals with emphasis on copper sulphides — A review , 2006 .

[43]  K. Timmis,et al.  Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. , 2000, International journal of systematic and evolutionary microbiology.

[44]  J. Cha,et al.  Copper Hypersensitivity and Uptake in Pseudomonas syringae Containing Cloned Components of the Copper Resistance Operon , 1993, Applied and environmental microbiology.

[45]  S. K. Ward,et al.  The Global Responses of Mycobacterium tuberculosis to Physiological Levels of Copper , 2008, Journal of bacteriology.

[46]  N. Kurosawa,et al.  Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. , 1998, International journal of systematic bacteriology.

[47]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[48]  J. Banfield,et al.  An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. , 2000, Science.

[49]  A. Scaloni,et al.  Redox stress proteins are involved in adaptation response of the hyperthermoacidophilic archaeon Sulfolobus solfataricus to nickel challenge , 2007, Microbial cell factories.

[50]  Ruiping Huang,et al.  Novel components and enzymatic activities of the human erythrocyte plasma membrane calcium pump , 1997, FEBS letters.

[51]  Thomas V. O'Halloran,et al.  The Independent cue and cusSystems Confer Copper Tolerance during Aerobic and Anaerobic Growth inEscherichia coli * , 2001, The Journal of Biological Chemistry.

[52]  W. Konings,et al.  Energetics of alanine, lysine, and proline transport in cytoplasmic membranes of the polyphosphate-accumulating Acinetobacter johnsonii strain 210A , 1994, Journal of bacteriology.

[53]  D. Eisenberg,et al.  Assessment of protein models with three-dimensional profiles , 1992, Nature.

[54]  F. Acevedo,et al.  Adaptation of Sulfolobus metallicus to high pulp densities in the biooxidation of a flotation gold concentrate , 2008 .

[55]  Arthur Kornberg,et al.  Inorganic polyphosphate: essential for growth and survival. , 2009, Annual review of biochemistry.

[56]  S. Harrison,et al.  Sulfide Mineral Induced Oxidative Stress as a Limiting Factor in Tank Bioleaching Performance , 2009 .

[57]  T. O’Halloran,et al.  Transcriptional Activation of an Escherichia coliCopper Efflux Regulon by the Chromosomal MerR Homologue, CueR* , 2000, The Journal of Biological Chemistry.

[58]  S. Waksman,et al.  MICROÖRGANISMS CONCERNED IN THE OXIDATION OF SULFUR IN THE SOIL II. THIOBACILLUS THIOOXIDANS, A NEW SULFUR-OXIDIZING ORGANISM ISOLATED FROM THE SOIL , 1922, Journal of bacteriology.

[59]  F. Crundwell,et al.  The effect of As(III) on the growth of Thiobacillus ferrooxidans in an electrolytic cell under controlled redox potentials , 1996 .

[60]  A. Kornberg,et al.  Polyphosphate kinase is highly conserved in many bacterial pathogens , 1998, Molecular microbiology.

[61]  Vivien Lowndes,et al.  SOMETHING OLD, SOMETHING NEW, SOMETHING BORROWED … , 2005 .

[62]  R. Kelly,et al.  Life in hot acid: pathway analyses in extremely thermoacidophilic archaea. , 2008, Current opinion in biotechnology.

[63]  C. Rensing,et al.  CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Kristjánsson,et al.  Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi Comb. nov.: Facultatively Aerobic, Extremely Acidophilic Thermophilic Sulfur-Metabolizing Archaebacteria , 1986 .

[65]  A. Schippers MICROORGANISMS INVOLVED IN BIOLEACHING AND NUCLEIC ACID-BASED MOLECULAR METHODS FOR THEIR IDENTIFICATION AND QUANTIFICATION , 2007 .

[66]  D. Nies Bacterial Transition Metal Homeostasis , 2007 .

[67]  S. Wold,et al.  Optimization of pyrite bioleaching using Sulfolobus acidocaldarius , 1993, Applied Microbiology and Biotechnology.

[68]  N. Glansdorff,et al.  Physiology and biochemistry of extremophiles. , 2007 .

[69]  J. Modak,et al.  Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance , 1998, Antonie van Leeuwenhoek.

[70]  S. Waksman MICROÖRGANISMS CONCERNED IN THE OXIDATION OF SULFUR IN THE SOIL: III. MEDIA USED FOR THE ISOLATION OF SULFUR BACTERIA FROM THE SOIL , 1922 .

[71]  W. Sand,et al.  Physiological characteristics of thiobacillus ferrooxidans and leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching , 1992 .

[72]  M. de Mello,et al.  Differential gene expression in response to copper in Acidithiobacillus ferrooxidans analyzed by RNA arbitrarily primed polymerase chain reaction , 2002, Electrophoresis.

[73]  Inti Pedroso,et al.  Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans , 2007, Nucleic acids research.

[74]  C. Rensing,et al.  Acidophiles: Mechanisms To Tolerate Metal and Acid Toxicity , 2007 .

[75]  Francisco P. Chávez,et al.  The Exopolyphosphatase Gene from Sulfolobus solfataricus: Characterization of the First Gene Found To Be Involved in Polyphosphate Metabolism in Archaea , 2002, Applied and Environmental Microbiology.

[76]  K. Waldron,et al.  How do bacterial cells ensure that metalloproteins get the correct metal? , 2009, Nature Reviews Microbiology.

[77]  E. Pedone,et al.  Peroxiredoxins as cellular guardians in Sulfolobus solfataricus– characterization of Bcp1, Bcp3 and Bcp4 , 2008, The FEBS journal.

[78]  P. Norris,et al.  Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. , 1996, Microbiology.

[79]  Thijs J. G. Ettema,et al.  Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2. , 2006, Microbiology.

[80]  M. McEvoy,et al.  Unusual Cu(I)/Ag(I) coordination of Escherichia coli CusF as revealed by atomic resolution crystallography and X‐ray absorption spectroscopy , 2007, Protein science : a publication of the Protein Society.

[81]  Wolfgang Sand,et al.  Microbial Processing of Metal Sulfides , 2007 .

[82]  Hehuan Liao,et al.  Insights into Two High Homogenous Genes Involved in Copper Homeostasis in Acidithiobacillus ferrooxidans , 2008, Current Microbiology.

[83]  I. A. Chisholm,et al.  Metal resistance and plasmid DNA in Thiobacillus ferrooxidans , 1998, Antonie van Leeuwenhoek.

[84]  D. Thiele,et al.  The ABCDs of periplasmic copper trafficking. , 2002, Structure.

[85]  C. Vulpe,et al.  CPx-type ATPases: a class of P-type ATPases that pump heavy metals. , 1996, Trends in biochemical sciences.

[86]  J. Shabanowitz,et al.  Periplasmic Proteins of the Extremophile Acidithiobacillus ferrooxidans , 2007, Molecular & Cellular Proteomics.

[87]  Thijs J G Ettema,et al.  TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. , 2003, Trends in biochemical sciences.

[88]  F W Oehme,et al.  Microbial resistance to metals in the environment. , 2000, Ecotoxicology and environmental safety.

[89]  B. Persson,et al.  Studies of cytochrome c oxidase-driven H(+)-coupled phosphate transport catalyzed by the Saccharomyces cerevisiae Pho84 permease in coreconstituted vesicles. , 1999, Biochemistry.

[90]  Carlos A. Jerez,et al.  Copper Ions Stimulate Polyphosphate Degradation and Phosphate Efflux in Acidithiobacillus ferrooxidans , 2004, Applied and Environmental Microbiology.

[91]  E. Cabiscol,et al.  Oxidative stress in bacteria and protein damage by reactive oxygen species. , 2000, International microbiology : the official journal of the Spanish Society for Microbiology.

[92]  C. Baker-Austin,et al.  Molecular insight into extreme copper resistance in the extremophilic archaeon 'Ferroplasma acidarmanus' Fer1. , 2005, Microbiology.

[93]  C. Jerez The use of genomics, proteomics and other OMICS technologies for the global understanding of biomining microorganisms , 2008 .

[94]  O. Tuovinen,et al.  Bacterial Oxidation of Refractory Sulfide Ores for Gold Recovery , 1992 .

[95]  A. Orell,et al.  Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. , 2006, Microbiology.

[96]  D. Reyon,et al.  Crystal structure of the membrane fusion protein CusB from Escherichia coli. , 2009, Journal of molecular biology.

[97]  P. Blum,et al.  The Genome Sequence of the Metal-Mobilizing, Extremely Thermoacidophilic Archaeon Metallosphaera sedula Provides Insights into Bioleaching-Associated Metabolism , 2007, Applied and Environmental Microbiology.

[98]  D. Hunt,et al.  Genomics, metagenomics and proteomics in biomining microorganisms. , 2006, Biotechnology advances.

[99]  A. Kornberg,et al.  Inorganic polyphosphate: a molecule of many functions. , 1999, Progress in molecular and subcellular biology.

[100]  P. Norris,et al.  Acidophiles in bioreactor mineral processing , 2000, Extremophiles.