Simulation of hybrid silicon nitride/polymer Mach-Zehnder optical modulator beyond 170 GHz

In this paper, a hybrid Mach-Zehnder optical modulator is proposed based on silicon nitride/organic polymer waveguides, which is expected to break through the performance bottleneck of the silicon-based optical modulator by exploiting the low-loss optical transmission property of silicon nitride waveguides and the excellent modulation performance of organic polymers. For reduction of the optical loss and ease of photonic packaging, perfectly vertical silicon nitride bidirectional grating couplers are utilized for both input/output optical coupling and power splitting/combining. Thus, a Mach-Zehnder interferometer can be constructed with a back-to-back configuration of such grating couplers. With grating apodization, the coupler can achieve a simulated coupling efficiency of 70%. To bridge the silicon nitride waveguides and the polymer waveguides, a longitudinal adiabatic mode-spot converter with a transmission efficiency of 99.2% was designed. In this paper, high-β donor-π bridge-accepter molecule YLD-124 combined with HD-BB-OH as the host polymer is utilized for a design example. The polymer waveguides with inverted ridge structure can be realized through the processes of silica cladding etching, spin coating or microfluidic trench filling of polymer. Following this design, we numerically demonstrate a hybrid silicon nitride-polymer Mach-Zehnder modulator with modulation efficiency of 1.57 Vcm and Electric-Optical bandwidth of 174 GHz. The total insertion loss is less than 5.74 dB, including two grating coupler losses of about 3.08 dB.

[1]  Shun Kamada,et al.  Superiorly low half-wave voltage electro-optic polymer modulator for visible photonics. , 2022, Optics express.

[2]  V. Duarte,et al.  High-efficiency grating coupler for an ultralow-loss Si3N4-based platform. , 2022, Optics letters.

[3]  J. Witzens,et al.  Silicon nitride C-band grating couplers with reduced waveguide back-reflection , 2022, OPTO.

[4]  Duruo Huang,et al.  State-of-the-Art and Future Prospects , 2022, Hydroscience and Engineering.

[5]  F. Gardes,et al.  Designs of Silicon Nitride Slot Waveguide Modulators With Electro-Optic Polymer and the Effect of Induced Charges in Si-Substrate on Their Performance , 2021, IEEE Photonics Journal.

[6]  Yuzhi Chen,et al.  Design of a graphene-based silicon nitride multimode waveguide-integrated electro-optic modulator , 2021 .

[7]  Ke Li,et al.  Electronic–photonic convergence for silicon photonics transmitters beyond 100 Gbps on–off keying , 2020 .

[8]  Juerg Leuthold,et al.  A monolithic bipolar CMOS electronic–plasmonic high-speed transmitter , 2020, Nature Electronics.

[9]  Andrew J. Mercante,et al.  Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform. , 2020, Optics letters.

[10]  Jianxun Hong,et al.  A high efficiency silicon nitride waveguide grating coupler with a multilayer bottom reflector , 2019, Scientific Reports.

[11]  Roel Baets,et al.  Integrated silicon nitride electro-optic modulators with atomic layer deposited overlays. , 2019, Optics letters.

[12]  Hermann Massler,et al.  500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics , 2018, APL Photonics.

[13]  L. Liu,et al.  High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond , 2018, Nature Photonics.

[14]  Daniel J. Blumenthal,et al.  Silicon Nitride in Silicon Photonics , 2018, Proceedings of the IEEE.

[15]  Xi Xiao,et al.  Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications , 2018 .

[16]  K. Neyts,et al.  Nanophotonic Pockels modulators on a silicon nitride platform , 2018, Nature Communications.

[17]  Jianxun Hong,et al.  Plate-slot polymer waveguide modulator on silicon-on-insulator. , 2018, Optics express.

[18]  M. Lauermann,et al.  Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator , 2017, Optica.

[19]  Shiyoshi Yokoyama,et al.  High thermal stability 40 GHz electro-optic polymer modulators , 2017 .

[20]  Juerg Leuthold,et al.  Effect of Rigid Bridge-Protection Units, Quadrupolar Interactions, and Blending in Organic Electro-Optic Chromophores , 2017 .

[21]  Bart Kuyken,et al.  Broadband electro-optic modulation using low-loss PZT-on-silicon nitride integrated waveguides , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[22]  Juerg Leuthold,et al.  Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. , 2017, Optics express.

[23]  Peter M. Krummrich,et al.  Low Loss Electro-Optic Polymer Based Fast Adaptive Phase Shifters Realized in Silicon Nitride and Oxynitride Waveguide Technology , 2016 .

[24]  D. Hillerkuss,et al.  108 Gbit/s Plasmonic Mach–Zehnder Modulator with > 70-GHz Electrical Bandwidth , 2016, Journal of Lightwave Technology.

[25]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[26]  C. Koos,et al.  Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40 Gbit/s , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[27]  Isao Aoki,et al.  A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator , 2015, Scientific Reports.

[28]  Guo-Qiang Lo,et al.  High-efficiency Si optical modulator using Cu travelling-wave electrode. , 2014, Optics express.

[29]  Raluca Dinu,et al.  100 GHz silicon–organic hybrid modulator , 2014, Light: Science & Applications.

[30]  P Crozat,et al.  A 40 Gbit/s optical link on a 300-mm silicon platform. , 2014, Optics express.

[31]  Ke Li,et al.  Recent breakthroughs in carrier depletion based silicon optical modulators , 2014 .

[32]  Beiju Huang,et al.  Bidirectional grating coupler based optical modulator for low-loss integration and low-cost fiber packaging. , 2013, Optics express.

[33]  Jinzhong Yu,et al.  High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. , 2013, Optics express.

[34]  Po Dong,et al.  High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. , 2012, Optics express.

[35]  Guo-Qiang Lo,et al.  Silicon Mach-Zehnder modulator of extinction ratio beyond 10dB at 10.0–12.5Gbps , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[36]  Larry R Dalton,et al.  Electric field poled organic electro-optic materials: state of the art and future prospects. , 2010, Chemical reviews.

[37]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[38]  V. Lien,et al.  A prealigned process of integrating optical waveguides with microfluidic devices , 2004, IEEE Photonics Technology Letters.

[39]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[40]  Saburo Imamura,et al.  Polymeric optical waveguides for optical interconnections , 1998 .

[41]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .