KALREF—A Kalman filter and time series approach to the International Terrestrial Reference Frame realization

The current International Terrestrial Reference Frame is based on a piecewise linear site motion model and realized by reference epoch coordinates and velocities for a global set of stations. Although linear motions due to tectonic plates and glacial isostatic adjustment dominate geodetic signals, at today's millimeter precisions, nonlinear motions due to earthquakes, volcanic activities, ice mass losses, sea level rise, hydrological changes, and other processes become significant. Monitoring these (sometimes rapid) changes desires consistent and precise realization of the terrestrial reference frame (TRF) quasi-instantaneously. Here, we use a Kalman filter and smoother approach to combine time series from four space geodetic techniques to realize an experimental TRF through weekly time series of geocentric coordinates. In addition to secular, periodic, and stochastic components for station coordinates, the Kalman filter state variables also include daily Earth orientation parameters and transformation parameters from input data frames to the combined TRF. Local tie measurements among colocated stations are used at their known or nominal epochs of observation, with comotion constraints applied to almost all colocated stations. The filter/smoother approach unifies different geodetic time series in a single geocentric frame. Fragmented and multitechnique tracking records at colocation sites are bridged together to form longer and coherent motion time series. While the time series approach to TRF reflects the reality of a changing Earth more closely than the linear approximation model, the filter/smoother is computationally powerful and flexible to facilitate incorporation of other data types and more advanced characterization of stochastic behavior of geodetic time series.

[1]  F. N. Teferle,et al.  External Evaluation of the Terrestrial Reference Frame: Report of the Task Force of the IAG Sub-commission 1.2 , 2014 .

[2]  Luca Vittuari,et al.  Surveying co-located space-geodetic instruments for ITRF computation , 2004 .

[3]  Xavier Collilieux,et al.  Accuracy of the International Terrestrial Reference Frame origin and Earth expansion , 2011 .

[4]  Peter J. Clarke,et al.  Inversion of Earth's changing shape to weigh sea level in static equilibrium with surface mass redistribution , 2003 .

[5]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[6]  Peter J. Clarke,et al.  Geocenter motions from GPS: A unified observation model , 2006 .

[7]  J. Ray,et al.  Geocenter motion and its geodetic and geophysical implications , 2012 .

[8]  Michael B. Heflin,et al.  Seasonal and interannual global surface mass variations from multisatellite geodetic data , 2006 .

[9]  Michael B. Heflin,et al.  Global geodesy using GPS without fiducial sites , 1992 .

[10]  B. Chao,et al.  Detection of a Large-Scale Mass Redistribution in the Terrestrial System Since 1998 , 2002, Science.

[11]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[12]  Richard S. Gross,et al.  A Kalman-filter-based approach to combining independent Earth-orientation series , 1998 .

[13]  D. Dong,et al.  Non-linearity of geocentre motion and its impact on the origin of the terrestrial reference frame , 2013 .

[14]  Leonid Petrov,et al.  Study of the atmospheric pressure loading signal in very long baseline interferometry observations , 2003, physics/0311096.

[15]  T. M. Chin,et al.  Modeling and forecast of the polar motion excitation functions for short-term polar motion prediction , 2004 .

[16]  Pascal Willis,et al.  Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2 , 2010 .

[17]  T. van Dam,et al.  Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations , 2005 .

[18]  Z. Altamimi,et al.  Quality Assessment of the IDS Contribution to ITRF2008 , 2010 .

[19]  Peter Steigenberger,et al.  Realization of the Terrestrial Reference System by a reprocessed global GPS network , 2008 .

[20]  Z. Altamimi,et al.  ITRF2005 : A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters , 2007 .

[21]  Pascal Willis,et al.  IDS contribution to ITRF2008 , 2009 .

[22]  S. Williams The effect of coloured noise on the uncertainties of rates estimated from geodetic time series , 2003 .

[23]  Florent Lyard,et al.  Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing ‐ comparisons with observations , 2003 .

[24]  Zuheir Altamimi,et al.  Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters , 2011, Journal of Geodesy.

[25]  Xavier Collilieux,et al.  Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods , 2007 .

[26]  Xavier Collilieux,et al.  ITRF2008 plate motion model , 2011 .

[27]  T. Dixon,et al.  Accelerating uplift in the North Atlantic region as an indicator of ice loss , 2010 .

[28]  Robert W. King,et al.  Estimating regional deformation from a combination of space and terrestrial geodetic data , 1998 .

[29]  Stephen M. Lichten,et al.  Estimation and filtering for high-precision GPS positioning applications , 1990 .

[30]  T. Artz,et al.  VLBI terrestrial reference frame contributions to ITRF2008 , 2010 .

[31]  J. Ray,et al.  Effect of the satellite laser ranging network distribution on geocenter motion estimation , 2009 .

[32]  Zuheir Altamimi,et al.  A collinearity diagnosis of the GNSS geocenter determination , 2013, Journal of Geodesy.

[33]  Xavier Collilieux,et al.  Global sea-level rise and its relation to the terrestrial reference frame , 2009 .

[34]  Manuela Seitz,et al.  The 2008 DGFI realization of the ITRS: DTRF2008 , 2012, Journal of Geodesy.

[35]  M. Cheng,et al.  Geocenter Variations from Analysis of SLR Data , 2013 .

[36]  R. Ferland,et al.  The IGS-combined station coordinates, earth rotation parameters and apparent geocenter , 2009 .

[37]  Jim R. Ray,et al.  Dependence of IGS Products on the ITRF Datum , 2013 .

[38]  Manuela Seitz,et al.  Non-linear station motions in epoch and multi-year reference frames , 2013, Journal of Geodesy.

[39]  Geoffrey Blewitt,et al.  Effect of annual signals on geodetic velocity , 2002 .

[40]  Meghan S. Miller,et al.  Present‐day motion of the Sierra Nevada block and some tectonic implications for the Basin and Range province, North American Cordillera , 2000 .

[41]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[42]  G. Blewitt Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth , 2003 .

[43]  T. Dixon,et al.  Noise in GPS coordinate time series , 1999 .

[44]  Gary T. Mitchum,et al.  Monitoring the Stability of Satellite Altimeters with Tide Gauges , 1998 .

[45]  Michael B. Heflin,et al.  Global coordinates with centimeter accuracy in the International Terrestrial Reference Frame using GPS , 1992 .

[46]  John Junkins,et al.  Optimal Estimation of Dynamic Systems, Second Edition , 2011 .

[47]  Pascal Willis,et al.  Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data , 2004 .