Inverse problems for the connection Laplacian

We reconstruct a Riemannian manifold and a Hermitian vector bundle with compatible connection from the hyperbolic Dirichlet-to-Neumann operator associated with the wave equation of the connection Laplacian. The boundary data is local and the reconstruction is up to the natural gauge transformations of the problem. As a corollary we derive an elliptic analogue of the main result which solves a Calderon problem for connections on a cylinder.

[1]  Matti Lassas,et al.  Reconstruction and stability in Gelfand’s inverse interior spectral problem , 2017, Analysis & PDE.

[2]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[3]  Richard S. Palais,et al.  On the differentiability of isometries , 1957 .

[4]  V. Isakov,et al.  Uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems , 2002 .

[5]  M. I. Belishev,et al.  To the reconstruction of a Riemannian manifold via its spectral data (BC-method) , 1992 .

[6]  Michèle Vergne,et al.  Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .

[7]  M. Salo,et al.  The Calderón problem in transversally anisotropic geometries , 2013, 1305.1273.

[8]  David V. Finch,et al.  The x-ray transform for a non-Abelian connection in two dimensions , 2001 .

[9]  M. Salo,et al.  The attenuated ray transform for connections and Higgs fields , 2011, 1108.1118.

[10]  Gel'fand inverse problem for a quadratic operator pencil , 2000 .

[11]  J. Lions,et al.  Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .

[12]  G. Eskin Inverse Hyperbolic Problems with Time-Dependent Coefficients , 2005, math/0508161.

[13]  M. Salo,et al.  The X-Ray Transform for Connections in Negative Curvature , 2015, 1502.04720.

[14]  Gregory Eskin On the non-abelian Radon transform , 2004 .

[15]  Inverse problems and index formulae for Dirac operators , 2005, math/0501049.

[16]  Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov–Bohm effect , 2006, math/0611342.

[17]  H. Isozaki,et al.  Introduction to spectral theory and inverse problem on asymptotically hyperbolic manifolds , 2011, 1102.5382.

[18]  Tataru Daniel,et al.  Unique continuation for solutions to pde's; between hörmander's theorem and holmgren' theorem , 1995 .

[19]  Terence Tao,et al.  Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions , 2002 .

[20]  M. Lassas,et al.  Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets , 2012, 1208.2105.

[21]  Lauri Oksanen,et al.  Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements , 2011, 1101.4836.

[22]  Riemannian Geometry: Riemannian Volume , 2006 .

[23]  G. Eskin Inverse problems for hyperbolic equations , 2014, 1407.5233.

[24]  M. Lassas,et al.  Inverse Boundary Spectral Problems , 2001 .

[25]  Y. Kurylev An inverse boundary problem for the Schrödinger operator with magnetic field , 1995 .

[26]  Inverse problems for Schrödinger equations with Yang–Mills potentials in domains with obstacles and the Aharonov–Bohm effect , 2005, math/0505554.

[27]  M. Eller,et al.  A global Holmgren theorem for multidimensional hyperbolic partial differential equations , 2012 .