On the geometric conservation law in transient flow calculations on deforming domains
暂无分享,去创建一个
Ekkehard Ramm | Wolfgang A. Wall | E. Ramm | W. Wall | C. Förster | W. A. Wall | E. Ramm | Ch. Förster
[1] C. Farhat,et al. Bubble Functions Prompt Unusual Stabilized Finite Element Methods , 1994 .
[2] Charbel Farhat,et al. On the significance of the geometric conservation law for flow computations on moving meshes , 2000 .
[3] Charbel Farhat,et al. Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes , 1999 .
[4] Charbel Farhat,et al. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .
[5] J. Oden,et al. Finite Element Methods for Flow Problems , 2003 .
[6] A. Huerta,et al. Finite Element Methods for Flow Problems , 2003 .
[7] Daniele Boffi,et al. Stability and geometric conservation laws for ALE formulations , 2004 .
[8] L. Franca,et al. On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .
[9] Kenneth E. Jansen,et al. A better consistency for low-order stabilized finite element methods , 1999 .
[10] Wolfgang A. Wall. Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen , 1999 .
[11] Charbel Farhat,et al. Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids , 2004 .
[12] Charbel Farhat,et al. Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations , 2003 .