Riemann-Hilbert analysis and uniform convergence of rational interpolants to the exponential function
暂无分享,去创建一个
[1] W. Van Assche,et al. The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .
[2] H. Stahl. Asymptotic Distributions of Zeros of Quadratic Hermite–Pade Polynomials Associated with the Exponential Function , 2006 .
[3] W. Van Assche,et al. Quadratic Hermite–Padé Approximation to the Exponential Function: A Riemann–Hilbert Approach , 2003 .
[4] Walter Van Assche,et al. Scalar and matrix Riemann-Hilbert approach to the strong asymptotics of Padé approximants and complex orthogonal polynomials with varying weight , 2004, J. Approx. Theory.
[5] F. Olver. Asymptotics and Special Functions , 1974 .
[6] Jinho Baik,et al. Optimal tail estimates for directed last passage site percolation with geometric random variables , 2001 .
[7] P. D. Miller,et al. Uniform Asymptotics for Polynomials Orthogonal With Respect to a General Class of Discrete Weights and Universality Results for Associated Ensembles , 2002 .
[8] A. Kuijlaars,et al. Asymptotic Zero Behavior of Laguerre Polynomials with Negative Parameter , 2002, math/0205175.
[9] Franck Wielonsky,et al. Rational Approximation to the Exponential Function with Complex Conjugate Interpolation Points , 2001, J. Approx. Theory.
[10] A. Gončar,et al. ON MARKOV'S THEOREM FOR MULTIPOINT PADÉ APPROXIMANTS , 1978 .
[11] H. Padé. Sur la représentation approchée d'une fonction par des fractions rationnelles , 1892 .
[12] N. Temme,et al. Asymptotics and zero distribution of Pade´ polynomials associated with the exponential function , 1998 .
[13] R. Tijdeman,et al. On the number of zeros of general exponential polynomials , 1970 .
[14] R. S. Varga,et al. ON THE ZEROS AND POLES OF PADÉ APPROXIMANTS TO ez. II , 1977 .
[15] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[16] Richard S. Varga,et al. Asymptotics for the zeros and poles of normalized Pad\'{e} approximants to ${\rm e}^{z}$ , 1994 .
[17] Александр Иванович Аптекарев,et al. Точные константы рациональных аппроксимаций аналитических функций@@@Sharp constants for rational approximations of analytic functions , 2002 .
[18] Arno B. J. Kuijlaars,et al. Riemann-Hilbert Analysis for Laguerre Polynomials with Large Negative Parameter , 2001 .
[19] C. Jacobi. Über die Darstellung einer Reihe gegebner Werthe durch eine gebrochne rationale Function. , .
[20] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.
[21] H. Padé,et al. Mémoire sur les développements en fractions continues de la fonction exponentielle, pouvant servir d'introduction à la théorie des fractions continues algébriques , 1899 .
[22] Herbert Stahl,et al. Quadratic Hermite-Padé polynomials associated with the exponential function , 2003, J. Approx. Theory.
[23] Percy Deift,et al. A continuum limit of the Toda lattice , 1998 .
[24] Arno B. J. Kuijlaars,et al. Riemann-Hilbert Analysis for Orthogonal Polynomials , 2003 .
[25] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .
[26] Laurent Baratchart,et al. Rational Interpolation of the Exponential Function , 1995, Canadian Journal of Mathematics.
[27] Yurii Lyubarskii,et al. Lectures on entire functions , 1996 .
[28] Pavel Bleher,et al. Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.
[29] Alexander Its,et al. A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics , 1997 .
[30] Stephanos Venakides,et al. UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .
[31] Charles Hermite,et al. Œuvres de Charles Hermite: Sur la fonction exponentielle , 1874 .
[32] Richard S. Varga,et al. On the zeros and poles of Padé approximants toez , 1975 .
[33] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .
[34] Stephanos Venakides,et al. Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .
[35] T. Kriecherbauer,et al. Strong asymptotics of polynomials orthogonal with respect to Freud weights , 1999 .
[36] A. Aptekarev. Sharp constants for rational approximations of analytic functions , 2002 .
[37] J. Baik,et al. On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.
[38] Pavel Bleher,et al. Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.