Riemann-Hilbert analysis and uniform convergence of rational interpolants to the exponential function

We study the asymptotic behavior of the polynomials p and q of degrees n, rational interpolants to the exponential function, defined by p(z)e-z/2 + q(z)ez/2 = O (ω2n + 1(z)), as z tends to the roots of ω2n + 1, a complex polynomial of degree 2n+1. The roots of ω2n+1 may grow to infinity with n, but their modulus should remain uniformly bounded by c log(n), c > 1/2, as n → ∞. We follow an approach similar to the one in a recent work with Arno Kuijlaars and Walter Van Assche on Hermite-Pade approximants to ez. The polynomials p and q are characterized by a Riemann-Hilbert problem for a 2 × 2 matrix valued function. The Deift-Zhou steepest descent method for Riemann-Hilbert problems is used to obtain strong uniform asymptotics for the scaled polynomials p(2nz) and q(2nz) in every domain in the complex plane. From these asymptotics, we deduce uniform convergence of general rational interpolants to the exponential function and a precise estimate on the error function. This extends previous results on rational interpolants to the exponential function known so far for real interpolation points and some cases of complex conjugate interpolation points.

[1]  W. Van Assche,et al.  The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .

[2]  H. Stahl Asymptotic Distributions of Zeros of Quadratic Hermite–Pade Polynomials Associated with the Exponential Function , 2006 .

[3]  W. Van Assche,et al.  Quadratic Hermite–Padé Approximation to the Exponential Function: A Riemann–Hilbert Approach , 2003 .

[4]  Walter Van Assche,et al.  Scalar and matrix Riemann-Hilbert approach to the strong asymptotics of Padé approximants and complex orthogonal polynomials with varying weight , 2004, J. Approx. Theory.

[5]  F. Olver Asymptotics and Special Functions , 1974 .

[6]  Jinho Baik,et al.  Optimal tail estimates for directed last passage site percolation with geometric random variables , 2001 .

[7]  P. D. Miller,et al.  Uniform Asymptotics for Polynomials Orthogonal With Respect to a General Class of Discrete Weights and Universality Results for Associated Ensembles , 2002 .

[8]  A. Kuijlaars,et al.  Asymptotic Zero Behavior of Laguerre Polynomials with Negative Parameter , 2002, math/0205175.

[9]  Franck Wielonsky,et al.  Rational Approximation to the Exponential Function with Complex Conjugate Interpolation Points , 2001, J. Approx. Theory.

[10]  A. Gončar,et al.  ON MARKOV'S THEOREM FOR MULTIPOINT PADÉ APPROXIMANTS , 1978 .

[11]  H. Padé Sur la représentation approchée d'une fonction par des fractions rationnelles , 1892 .

[12]  N. Temme,et al.  Asymptotics and zero distribution of Pade´ polynomials associated with the exponential function , 1998 .

[13]  R. Tijdeman,et al.  On the number of zeros of general exponential polynomials , 1970 .

[14]  R. S. Varga,et al.  ON THE ZEROS AND POLES OF PADÉ APPROXIMANTS TO ez. II , 1977 .

[15]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[16]  Richard S. Varga,et al.  Asymptotics for the zeros and poles of normalized Pad\'{e} approximants to ${\rm e}^{z}$ , 1994 .

[17]  Александр Иванович Аптекарев,et al.  Точные константы рациональных аппроксимаций аналитических функций@@@Sharp constants for rational approximations of analytic functions , 2002 .

[18]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Laguerre Polynomials with Large Negative Parameter , 2001 .

[19]  C. Jacobi Über die Darstellung einer Reihe gegebner Werthe durch eine gebrochne rationale Function. , .

[20]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[21]  H. Padé,et al.  Mémoire sur les développements en fractions continues de la fonction exponentielle, pouvant servir d'introduction à la théorie des fractions continues algébriques , 1899 .

[22]  Herbert Stahl,et al.  Quadratic Hermite-Padé polynomials associated with the exponential function , 2003, J. Approx. Theory.

[23]  Percy Deift,et al.  A continuum limit of the Toda lattice , 1998 .

[24]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Orthogonal Polynomials , 2003 .

[25]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[26]  Laurent Baratchart,et al.  Rational Interpolation of the Exponential Function , 1995, Canadian Journal of Mathematics.

[27]  Yurii Lyubarskii,et al.  Lectures on entire functions , 1996 .

[28]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[29]  Alexander Its,et al.  A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics , 1997 .

[30]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[31]  Charles Hermite,et al.  Œuvres de Charles Hermite: Sur la fonction exponentielle , 1874 .

[32]  Richard S. Varga,et al.  On the zeros and poles of Padé approximants toez , 1975 .

[33]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[34]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[35]  T. Kriecherbauer,et al.  Strong asymptotics of polynomials orthogonal with respect to Freud weights , 1999 .

[36]  A. Aptekarev Sharp constants for rational approximations of analytic functions , 2002 .

[37]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[38]  Pavel Bleher,et al.  Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.