Pedestrian Anomaly Detection Using Context-Sensitive Crowd Simulation

Detecting anomalies in crowd movement is an area of considerable interest for surveillance and security applications. The question we address is: What constitutes an anomalous steering choice for an individual in the group? Deviation from “normal” behavior may be defined as a subject making a steering decision the observer would not, provided the same circumstances. Since the number of possible spatial and movement configurations is huge and human steering behavior is adaptive in nature, we adopt a context-sensitive approach to assess individuals rather than assume population-wide homogeneity. When presented with spatial trajectories from processed surveillance data, our system creates a shadow simulation. The simulation then establishes the current, local context for each agent and computes a predicted steering behavior against which the person’s actual motion can be statistically compared. We demonstrate the efficacy of our technique with preliminary results using real-world tracking data from the Edinburgh Pedestrian Dataset. Disciplines Computer Sciences | Engineering | Graphics and Human Computer Interfaces This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/hms/167 Pedestrian Anomaly Detection Using Context-Sensitive Crowd Simulation Cory D. Boatright Mubbasir Kapadia Jennie M. Shapira Norman I. Badler University of Pennsylvania {coryb, mubbasir, jshapira, badler}@seas.upenn.edu

[1]  Norman I. Badler,et al.  Virtual Crowds: Methods, Simulation, and Control , 2008, Virtual Crowds: Methods, Simulation, and Control.

[2]  Daniel Cohen-Or,et al.  Fitting behaviors to pedestrian simulations , 2009, SCA '09.

[3]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[4]  Glenn Reinman,et al.  Footstep navigation for dynamic crowds , 2011, SI3D.

[5]  Jan M. Allbeck CAROSA: A Tool for Authoring NPCs , 2010, MIG.

[6]  Demetri Terzopoulos,et al.  A decision network framework for the behavioral animation of virtual humans , 2007, SCA '07.

[7]  Marshall F. Tappen,et al.  Learning pedestrian dynamics from the real world , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[8]  Daniel Cohen-Or,et al.  Context‐Dependent Crowd Evaluation , 2010, Comput. Graph. Forum.

[9]  Demetri Terzopoulos,et al.  Surveillance camera scheduling: a virtual vision approach , 2005, Multimedia Systems.

[10]  Daniel Thalmann,et al.  Crowd simulation , 2007 .

[11]  P. Faloutsos,et al.  evaluating steering behaviors , 2009 .

[12]  Robert B. Fisher,et al.  Modelling Crowd Scenes for Event Detection , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[13]  Dimitris N. Metaxas,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Group Behavior from Video: a Data-driven Approach to Crowd Simulation , 2022 .

[14]  Jianbo Shi,et al.  Detecting unusual activity in video , 2004, CVPR 2004.

[15]  Norman I. Badler,et al.  Virtual Crowds: Methods, Simulation, and Control (Synthesis Lectures on Computer Graphics and Animation) , 2008 .

[16]  Jessica K. Hodgins,et al.  Reactive pedestrian path following from examples , 2004, The Visual Computer.

[17]  Soraia Raupp Musse,et al.  Using computer vision to simulate the motion of virtual agents , 2007, Comput. Animat. Virtual Worlds.

[18]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[19]  Sergio A. Velastin,et al.  How close are we to solving the problem of automated visual surveillance? , 2008, Machine Vision and Applications.

[20]  P. Torrens,et al.  Building Agent‐Based Walking Models by Machine‐Learning on Diverse Databases of Space‐Time Trajectory Samples , 2011 .

[21]  Glenn Reinman,et al.  Scenario space: characterizing coverage, quality, and failure of steering algorithms , 2011, SCA '11.

[22]  Petros Faloutsos,et al.  Egocentric affordance fields in pedestrian steering , 2009, I3D '09.

[23]  Dani Lischinski,et al.  Crowds by Example , 2007, Comput. Graph. Forum.

[24]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2007, Graph. Model..

[25]  Glenn Reinman,et al.  SteerBug: an interactive framework for specifying and detecting steering behaviors , 2009, SCA '09.

[26]  L. F. Henderson,et al.  The Statistics of Crowd Fluids , 1971, Nature.

[27]  Barbara Majecka,et al.  Statistical models of pedestrian behaviour in the Forum , 2009 .

[28]  Glenn Reinman,et al.  SteerBench: a benchmark suite for evaluating steering behaviors , 2009, Comput. Animat. Virtual Worlds.

[29]  Claudio Rosito Jung,et al.  Using computer vision to simulate the motion of virtual agents: Research Articles , 2007 .