The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids.

The detection and quantification of specific metabolites in single bacterial cells is a major goal for industrial biotechnology. We have developed a biosensor based on the transcriptional regulator Lrp that detects intracellular l-methionine and branched-chain amino acids in Corynebacterium glutamicum. In assays, fluorescence output showed a linear relationship with cytoplasmic concentrations of the effector amino acids. In increasing order, the affinity of Lrp for the amino acids is l-valine, l-isoleucine, l-leucine and l-methionine. The sensor was applied for online monitoring and analysis of cell-to-cell variability of l-valine production by the pyruvate dehydrogenase-deficient C. glutamicum strain ΔaceE. Finally, the sensor system was successfully used in a high-throughput (HT) FACS screen for the isolation of amino acid-producing mutants after random mutagenesis of a non-producing wild type strain. These applications illustrate how one of nature's sensor devices - transcriptional regulators - can be used for the analysis, directed evolution and HT screening for microbial strain development.

[1]  Teresa Lopes da Silva,et al.  A comparative study using the dual staining flow cytometric protocol applied to Lactobacillus rhamnosus and Bacillus licheniformis batch cultures , 2009 .

[2]  K. Oh,et al.  A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. , 1996, Biochimica et biophysica acta.

[3]  Jan Roelof van der Meer,et al.  Whole-cell living biosensors—are they ready for environmental application? , 2006, Applied Microbiology and Biotechnology.

[4]  H. Mizoguchi,et al.  Characterization of mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain. , 2008, Mutation research.

[5]  S. Taguchi,et al.  Production system for biodegradable polyester polyhydroxybutyrate by Corynebacterium glutamicum. , 2006, Journal of bioscience and bioengineering.

[6]  Wolfgang Wiechert,et al.  Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments , 2013, Biotechnology and bioengineering.

[7]  M. Pátek,et al.  Pyruvate:Quinone Oxidoreductase in Corynebacterium glutamicum: Molecular Analysis of the pqo Gene, Significance of the Enzyme, and Phylogenetic Aspects , 2006, Journal of bacteriology.

[8]  W. Frommer,et al.  GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. , 2008, Biochimica et biophysica acta.

[9]  M. Inui,et al.  Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. , 2007, Microbiology.

[10]  Bastian Blombach,et al.  l-Valine Production with Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum , 2007, Applied and Environmental Microbiology.

[11]  H. Sahm,et al.  Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon , 1993, Journal of bacteriology.

[12]  L. Poulsen,et al.  New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria , 1998, Applied and Environmental Microbiology.

[13]  C. Hewitt,et al.  Physiological responses to mixing in large scale bioreactors. , 2001, Journal of biotechnology.

[14]  T. Humphrey,et al.  GFP plasmid-induced defects in Salmonella invasion depend on plasmid architecture, not protein expression. , 2009, Microbiology.

[15]  Yun Zhang,et al.  Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production , 2012, Science China Life Sciences.

[16]  S. Udaka,et al.  STUDIES ON THE AMINO ACID FERMENTATION , 1957 .

[17]  M. Bott,et al.  Metabolic engineering of microorganisms for the synthesis of plant natural products. , 2013, Journal of biotechnology.

[18]  M. Wall,et al.  Design of gene circuits: lessons from bacteria , 2004, Nature Reviews Genetics.

[19]  G. Stephanopoulos Metabolic fluxes and metabolic engineering. , 1999, Metabolic engineering.

[20]  Wolfgang Gärtner,et al.  Reporter proteins for in vivo fluorescence without oxygen , 2007, Nature Biotechnology.

[21]  Loren L Looger,et al.  Genetically encoded sensors for metabolites , 2005, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[22]  D. Dubnau,et al.  A ComGA‐dependent checkpoint limits growth during the escape from competence , 2001, Molecular microbiology.

[23]  M. Lidstrom,et al.  The role of physiological heterogeneity in microbial population behavior. , 2010, Nature chemical biology.

[24]  G. Catoni S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. , 1953, The Journal of biological chemistry.

[25]  Masayuki Inui,et al.  Metabolic Engineering of Corynebacterium glutamicum for Fuel Ethanol Production under Oxygen-Deprivation Conditions , 2005, Journal of Molecular Microbiology and Biotechnology.

[26]  H. Sahm,et al.  Linking Central Metabolism with Increased Pathway Flux: l-Valine Accumulation by Corynebacterium glutamicum , 2002, Applied and Environmental Microbiology.

[27]  M. Vrljic,et al.  A new type of transporter with a new type of cellular function: l‐lysine export from Corynebacterium glutamicum , 1996, Molecular microbiology.

[28]  A. Goesmann,et al.  The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. , 2003, Journal of biotechnology.

[29]  Joshua K. Michener,et al.  High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. , 2012, Metabolic engineering.

[30]  M. Inui,et al.  Metabolic Analysis of Corynebacterium glutamicum during Lactate and Succinate Productions under Oxygen Deprivation Conditions , 2004, Journal of Molecular Microbiology and Biotechnology.

[31]  Kate Thodey,et al.  Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. , 2012, Metabolic engineering.

[32]  Alvaro R. Lara,et al.  Living with heterogeneities in bioreactors , 2006, Molecular biotechnology.

[33]  Luis A. García,et al.  Application of flow cytometry to industrial microbial bioprocesses , 2010 .

[34]  T. Terwilliger,et al.  Engineering and characterization of a superfolder green fluorescent protein , 2006, Nature Biotechnology.

[35]  T. Hübschmann,et al.  Advanced tool for characterization of microbial cultures by combining cytomics and proteomics , 2010, Applied Microbiology and Biotechnology.

[36]  James C. W. Locke,et al.  Using movies to analyse gene circuit dynamics in single cells , 2009, Nature Reviews Microbiology.

[37]  S. Belkin Microbial whole-cell sensing systems of environmental pollutants. , 2003, Current opinion in microbiology.

[38]  Alvin W. Nienow,et al.  The application of multi-parameter flow cytometry to the study of recombinant Escherichia coli batch fermentation processes , 2004, Journal of Industrial Microbiology and Biotechnology.

[39]  M. Win,et al.  A modular and extensible RNA-based gene-regulatory platform for engineering cellular function , 2007, Proceedings of the National Academy of Sciences.

[40]  Andreas Schmid,et al.  Chemical and biological single cell analysis. , 2010, Current opinion in biotechnology.

[41]  Volker F. Wendisch,et al.  Corynebacterium glutamicum Tailored for Efficient Isobutanol Production , 2011, Applied and Environmental Microbiology.

[42]  B. Eikmanns,et al.  Importance of NADPH supply for improved L‐valine formation in Corynebacterium glutamicum , 2009, Biotechnology progress.

[43]  Gunnar Lidén,et al.  Understanding the bioreactor , 2002 .

[44]  Masayuki Inui,et al.  An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain , 2008, Applied Microbiology and Biotechnology.

[45]  D. Dubnau,et al.  Noise in Gene Expression Determines Cell Fate in Bacillus subtilis , 2007, Science.

[46]  C. Chassagnole,et al.  Rational Design of a Corynebacterium glutamicum Pantothenate Production Strain and Its Characterization by Metabolic Flux Analysis and Genome-Wide Transcriptional Profiling , 2005, Applied and Environmental Microbiology.

[47]  Frank Kensy,et al.  Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates , 2009, Microbial cell factories.

[48]  Hyun Uk Kim,et al.  Metabolic engineering of microorganisms: general strategies and drug production. , 2009, Drug discovery today.

[49]  J. Kalinowski,et al.  The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate , 2005, Molecular microbiology.

[50]  R. Losick,et al.  Cannibalism by Sporulating Bacteria , 2003, Science.

[51]  Susann Müller,et al.  From multi-omics to basic structures of biological systems. , 2013, Current opinion in biotechnology.

[52]  S. Bodovitz,et al.  Single cell analysis: the new frontier in 'omics'. , 2010, Trends in biotechnology.

[53]  Analysis of Corynebacterium glutamicum methionine biosynthetic pathway: isolation and analysis of metB encoding cystathionine gamma-synthase. , 1999, Molecules and cells.

[54]  H. Bujard,et al.  Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. , 1997, Nucleic acids research.

[55]  Taesung Kim,et al.  Microfluidic Technologies for Synthetic Biology , 2011, International journal of molecular sciences.

[56]  S. Rosenberg,et al.  Spontaneous DNA breakage in single living Escherichia coli cells , 2007, Nature Genetics.

[57]  M. Pátek,et al.  Analysis of the Corynebacterium glutamicum dapA Promoter , 1999, Journal of bacteriology.

[58]  V. Vinci,et al.  Improvement of microbial strains and fermentation processes , 2000, Applied Microbiology and Biotechnology.

[59]  Byron F. Brehm-Stecher,et al.  Single-Cell Microbiology: Tools, Technologies, and Applications , 2004, Microbiology and Molecular Biology Reviews.

[60]  S. Sørensen,et al.  Experimental methods and modeling techniques for description of cell population heterogeneity. , 2011, Biotechnology Advances.

[61]  Paul Keim,et al.  Development and Testing of a Bacterial Biosensor for Toluene-Based Environmental Contaminants , 1998, Applied and Environmental Microbiology.

[62]  Patrick C Cirino,et al.  Design and application of a mevalonate-responsive regulatory protein. , 2011, Angewandte Chemie.

[63]  S. Leibler,et al.  Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments , 2005, Science.

[64]  G. Sandmann,et al.  Novel hydroxycarotenoids with improved antioxidative properties produced by gene combination in Escherichia coli , 2000, Nature Biotechnology.

[65]  Krist V Gernaey,et al.  Physiological heterogeneities in microbial populations and implications for physical stress tolerance , 2012, Microbial Cell Factories.

[66]  A. Yokota,et al.  Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032. , 2010, Metabolic engineering.

[67]  J. Bailey,et al.  Toward a science of metabolic engineering , 1991, Science.

[68]  A. Bellmann,et al.  Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. , 2001, Microbiology.

[69]  Sang Yup Lee,et al.  Metabolic pathways and fermentative production of L‐aspartate family amino acids , 2010, Biotechnology journal.

[70]  H. Sahm,et al.  l-Glutamate and l-lysine: traditional products with impetuous developments , 1999, Applied Microbiology and Biotechnology.

[71]  H. Inoue,et al.  Molecular characterization of the mde operon involved in L-methionine catabolism of Pseudomonas putida , 1997, Journal of bacteriology.

[72]  M. S. Lee,et al.  Properties of the Corynebacterium glutamicum metC gene encoding cystathionine beta-lyase. , 2001, Molecules and cells.

[73]  Bastian Blombach,et al.  RamB Is an Activator of the Pyruvate Dehydrogenase Complex Subunit E1p Gene in Corynebacterium glutamicum , 2007, Journal of Molecular Microbiology and Biotechnology.

[74]  M. Díaz,et al.  Physiological heterogeneity of Pseudomonas taetrolens during lactobionic acid production , 2012, Applied Microbiology and Biotechnology.

[75]  M. Ikeda,et al.  The Corynebacterium glutamicum genome: features and impacts on biotechnological processes , 2003, Applied Microbiology and Biotechnology.

[76]  B. Weil,et al.  Isoleucine excretion in Corynebacterium glutamicum: evidence for a specific efflux carrier system , 1989, Applied Microbiology and Biotechnology.

[77]  James Gomes,et al.  Methionine production by fermentation. , 2005, Biotechnology advances.

[78]  Julian Parkhill,et al.  Single-cell genomics , 2008, Nature Reviews Microbiology.

[79]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[80]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[81]  M. Inui,et al.  Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation , 2010, Applied Microbiology and Biotechnology.

[82]  Camilla Rang,et al.  Fitness cost of the green fluorescent protein in gastrointestinal bacteria. , 2003, Canadian journal of microbiology.

[83]  Michael Bott,et al.  Corynebacterium glutamicum as a Host for Synthesis and Export of d-Amino Acids , 2011, Journal of bacteriology.

[84]  L. Eggeling,et al.  Handbook of Corynebacterium glutamicum , 2005 .

[85]  Gregory Stephanopoulos,et al.  Melanin-Based High-Throughput Screen for l-Tyrosine Production in Escherichia coli , 2007, Applied and Environmental Microbiology.

[86]  M. Saier,et al.  Export of l-Isoleucine from Corynebacterium glutamicum: a Two-Gene-Encoded Member of a New Translocator Family , 2002, Journal of bacteriology.

[87]  Julia Frunzke,et al.  The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids , 2012 .

[88]  Bastian Blombach,et al.  Bio-based production of organic acids with Corynebacterium glutamicum , 2012, Microbial biotechnology.

[89]  N. Friedman,et al.  Stochastic protein expression in individual cells at the single molecule level , 2006, Nature.

[90]  J. Vilar,et al.  From molecular noise to behavioural variability in a single bacterium , 2004, Nature.

[91]  R. Zenobi,et al.  Analytical techniques for single-cell metabolomics: state of the art and trends , 2010, Analytical and bioanalytical chemistry.

[92]  C. Hewitt,et al.  An industrial application of multiparameter flow cytometry: assessment of cell physiological state and its application to the study of microbial fermentations. , 2001, Cytometry.

[93]  S. Müller,et al.  Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. , 2010, FEMS microbiology reviews.

[94]  S. Yeaman,et al.  The 2-oxo acid dehydrogenase complexes: recent advances. , 1989, The Biochemical journal.

[95]  Konstantin A Lukyanov,et al.  Fluorescent proteins as a toolkit for in vivo imaging. , 2005, Trends in biotechnology.

[96]  Jerome T. Mettetal,et al.  Stochastic switching as a survival strategy in fluctuating environments , 2008, Nature Genetics.

[97]  Jan Roelof Meer,et al.  Bacterial Sensors: Synthetic Design and Application Principles , 2010 .

[98]  R. Tecon,et al.  Information from single-cell bacterial biosensors: what is it good for? , 2006, Current opinion in biotechnology.

[99]  Gregory Stephanopoulos,et al.  Metabolic engineering challenges in the post-genomic era , 2004 .

[100]  Thomas Bley,et al.  Origin and analysis of microbial population heterogeneity in bioprocesses. , 2010, Current opinion in biotechnology.

[101]  Y. Kim,et al.  Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in corynebacterium glutamicum. , 1998, Molecules and cells.

[102]  Julia Frunzke,et al.  Monitoring of population dynamics of Corynebacterium glutamicum by multiparameter flow cytometry , 2012, Microbial biotechnology.

[103]  B. Ames,et al.  Detection and classification of mutagens: a set of base-specific Salmonella tester strains. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Masayuki Inui,et al.  Engineering of Corynebacterium glutamicum for High-Yield l-Valine Production under Oxygen Deprivation Conditions , 2012, Applied and Environmental Microbiology.

[105]  Bastian Blombach,et al.  Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum , 2011, Bioengineered bugs.

[106]  A. deMello,et al.  Opportunities for microfluidic technologies in synthetic biology , 2009, Journal of The Royal Society Interface.

[107]  Robert E Campbell,et al.  Genetically encoded biosensors based on engineered fluorescent proteins. , 2009, Chemical Society reviews.

[108]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[109]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[110]  O. Kuipers,et al.  Bistability, epigenetics, and bet-hedging in bacteria. , 2008, Annual review of microbiology.

[111]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[112]  Andreas Möglich,et al.  From dusk till dawn: one-plasmid systems for light-regulated gene expression. , 2012, Journal of molecular biology.

[113]  K K Baldridge,et al.  The structure of the chromophore within DsRed, a red fluorescent protein from coral. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[114]  C. Wittmann,et al.  Bio-based production of chemicals, materials and fuels -Corynebacterium glutamicum as versatile cell factory. , 2012, Current opinion in biotechnology.

[115]  S. Lee,et al.  Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation , 2007, Proceedings of the National Academy of Sciences.

[116]  H. Sahm,et al.  Metabolic Engineering of Corynebacterium glutamicum for l-Serine Production , 2005, Applied and Environmental Microbiology.

[117]  Fuzhong Zhang,et al.  Biosensors and their applications in microbial metabolic engineering. , 2011, Trends in microbiology.

[118]  A. Burkovski,et al.  Destabilized eYFP variants for dynamic gene expression studies in Corynebacterium glutamicum , 2012, Microbial biotechnology.

[119]  L. Eggeling,et al.  The E2 Domain of OdhA of Corynebacterium glutamicum Has Succinyltransferase Activity Dependent on Lipoyl Residues of the Acetyltransferase AceF , 2010, Journal of bacteriology.

[120]  M. Inui,et al.  Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation , 2005, Applied Microbiology and Biotechnology.

[121]  F. Neidhardt,et al.  Physiology of the bacterial cell : a molecular approach , 1990 .

[122]  M. Hatsu,et al.  Metabolic Engineering of Corynebacterium glutamicum for Cadaverine Fermentation , 2007, Bioscience, biotechnology, and biochemistry.

[123]  A. Pühler,et al.  Genome-wide analysis of the L-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. , 2003, Journal of biotechnology.

[124]  J. Keasling,et al.  High-throughput metabolic engineering: advances in small-molecule screening and selection. , 2010, Annual review of biochemistry.

[125]  M. Inui,et al.  High yield secretion of heterologous proteins in Corynebacterium glutamicum using its own Tat-type signal sequence , 2011, Applied Microbiology and Biotechnology.

[126]  Samie R. Jaffrey,et al.  RNA mimics of green fluorescent protein , 2013 .

[127]  J. Ohnishi,et al.  A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant , 2001, Applied Microbiology and Biotechnology.

[128]  Michael Bott,et al.  A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level , 2012, Genome Biology.

[129]  W. Leuchtenberger,et al.  Biotechnological production of amino acids and derivatives: current status and prospects , 2005, Applied Microbiology and Biotechnology.

[130]  l-Isoleucine Production with Corynebacterium glutamicum: Further Flux Increase and Limitation of Export , 1996, Applied and environmental microbiology.

[131]  Christoph Wittmann,et al.  Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. , 2011, Metabolic engineering.

[132]  Stefan W. Hell,et al.  A Rapidly Maturing Far-Red Derivative of DsRed-Express2 for Whole-Cell Labeling , 2009, Biochemistry.

[133]  A. Schmid,et al.  Single-cell analysis in biotechnology, systems biology, and biocatalysis. , 2012, Annual review of chemical and biomolecular engineering.

[134]  B. Eikmanns,et al.  Corynebacterium glutamicum tailored for high-yield L-valine production , 2008, Applied Microbiology and Biotechnology.

[135]  W. Leuchtenberger Amino Acids – Technical Production and Use , 2001 .

[136]  Julia Frunzke,et al.  Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids. , 2012, Journal of biotechnology.

[137]  B. Bathe,et al.  Characterization of Methionine Export in Corynebacterium glutamicum , 2005, Journal of bacteriology.

[138]  C. Higgins,et al.  The use of an Escherichia coli Lys- auxotroph to assay nutritionally available lysine in biological materials. , 1977, The Journal of applied bacteriology.

[139]  Zhi Zhao,et al.  The ncgl1108 (PhePCg) gene encodes a new l-Phe transporter in Corynebacterium glutamicum , 2011, Applied Microbiology and Biotechnology.

[140]  S. Taguchi,et al.  Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Corynebacterium glutamicum using propionate as a precursor. , 2011, Journal of biotechnology.

[141]  R. Huber,et al.  Flavin Mononucleotide-Based Fluorescent Reporter Proteins Outperform Green Fluorescent Protein-Like Proteins as Quantitative In Vivo Real-Time Reporters , 2010, Applied and Environmental Microbiology.

[142]  G. Harrison,et al.  Isolation of a gramicidin S hyperproducing strain of Bacillus brevis by use of a flourescence activated cell sorting system , 1992, Applied Microbiology and Biotechnology.

[143]  Robert Auerbach,et al.  Isolation and Characterization of Carotenoid Hyperproducing Mutants of Yeast by Flow Cytometry and Cell Sorting , 1991, Bio/Technology.

[144]  Wolfgang Wiechert,et al.  A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. , 2012, Lab on a chip.

[145]  H. Sahm,et al.  l-Threonine Export: Use of Peptides To Identify a New Translocator from Corynebacterium glutamicum , 2001, Journal of bacteriology.

[146]  S. Noack,et al.  Comparative 13C Metabolic Flux Analysis of Pyruvate Dehydrogenase Complex-Deficient, l-Valine-Producing Corynebacterium glutamicum , 2011, Applied and Environmental Microbiology.

[147]  Shuangjiang Liu,et al.  Genetic and biochemical identification of the chorismate mutase from Corynebacterium glutamicum. , 2009, Microbiology.

[148]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[149]  Adam C. Fisher,et al.  Laboratory Evolution of Fast-Folding Green Fluorescent Protein Using Secretory Pathway Quality Control , 2008, PloS one.

[150]  E. Papoutsakis,et al.  Flow cytometry for bacteria: enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. , 2010, Current opinion in biotechnology.

[151]  M. Inui,et al.  Postgenomic approaches to using corynebacteria as biocatalysts. , 2012, Annual review of microbiology.

[152]  P. K. Ajikumar,et al.  The future of metabolic engineering and synthetic biology: towards a systematic practice. , 2012, Metabolic engineering.

[153]  M. Hensel,et al.  Cloning Vectors and Fluorescent Proteins Can Significantly Inhibit Salmonella enterica Virulence in Both Epithelial Cells and Macrophages: Implications for Bacterial Pathogenesis Studies , 2005, Infection and Immunity.

[154]  Alvin W Nienow,et al.  The scale-up of microbial batch and fed-batch fermentation processes. , 2007, Advances in applied microbiology.

[155]  J. Vives-Rego,et al.  Rapid flow cytometry – Nile red assessment of PHA cellular content and heterogeneity in cultures of Pseudomonas aeruginosa 47T2 (NCIB 40044) grown in waste frying oil , 2001, Antonie van Leeuwenhoek.

[156]  Bastian Blombach,et al.  Engineering Corynebacterium glutamicum for the production of pyruvate , 2012, Applied Microbiology and Biotechnology.

[157]  Masayuki Inui,et al.  Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid l-alanine under oxygen deprivation , 2010, Applied Microbiology and Biotechnology.

[158]  G. Gould,et al.  Quantal microbiology , 2000, Letters in Applied Microbiology.

[159]  T. Baldwin,et al.  Transcriptional regulation of bioluminesence genes from Vibrio fischeri , 1995, Molecular microbiology.

[160]  Hyun Gyu Park,et al.  Multiplexed amino acid array utilizing bioluminescent Escherichia coli auxotrophs. , 2010, Analytical chemistry.

[161]  S. Belkin,et al.  Where microbiology meets microengineering: design and applications of reporter bacteria , 2010, Nature Reviews Microbiology.

[162]  V. Wendisch,et al.  Putrescine production by engineered Corynebacterium glutamicum , 2010, Applied Microbiology and Biotechnology.

[163]  Rapid cloning of metK encoding methionine adenosyltransferase from Corynebacterium glutamicum by screening a genomic library on a high density colony-array. , 2000, FEMS microbiology letters.

[164]  Christian Trötschel,et al.  Methionine uptake in Corynebacterium glutamicum by MetQNI and by MetPS, a novel methionine and alanine importer of the NSS neurotransmitter transporter family. , 2008, Biochemistry.

[165]  James C. Liao,et al.  Engineering Corynebacterium glutamicum for isobutanol production , 2010, Applied Microbiology and Biotechnology.

[166]  M. Bott,et al.  Population Heterogeneity in Corynebacterium glutamicum ATCC 13032 Caused by Prophage CGP3 , 2008, Journal of bacteriology.

[167]  R. Krämer,et al.  Efflux of compatible solutes in Corynebacterium glutamicum mediated by osmoregulated channel activity. , 1997, European journal of biochemistry.

[168]  M. Ikeda Amino acid production processes. , 2003, Advances in biochemical engineering/biotechnology.

[169]  M. Ikeda Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering , 2006, Applied Microbiology and Biotechnology.

[170]  M. Pátek,et al.  E1 Enzyme of the Pyruvate Dehydrogenase Complex in Corynebacterium glutamicum: Molecular Analysis of the Gene and Phylogenetic Aspects , 2005, Journal of bacteriology.

[171]  Karsten Zengler,et al.  Adaptive laboratory evolution--harnessing the power of biology for metabolic engineering. , 2011, Current opinion in biotechnology.

[172]  Matthias Heinemann,et al.  Single cell metabolomics. , 2011, Current opinion in biotechnology.

[173]  Christoph Wittmann,et al.  Accumulation of Homolanthionine and Activation of a Novel Pathway for Isoleucine Biosynthesis in Corynebacterium glutamicum McbR Deletion Strains , 2006, Journal of bacteriology.

[174]  J. Kalinowski,et al.  The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. , 2003, Journal of biotechnology.

[175]  G. Stephanopoulos,et al.  Exploiting biological complexity for strain improvement through systems biology , 2004, Nature Biotechnology.

[176]  R. Losick,et al.  Cell population heterogeneity during growth of Bacillus subtilis. , 2005, Genes & development.

[177]  Michael Bott,et al.  Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum , 2011, Microbial biotechnology.

[178]  G. Stephanopoulos,et al.  Network rigidity and metabolic engineering in metabolite overproduction , 1991, Science.

[179]  Bastian Blombach,et al.  Metabolic Engineering of Corynebacterium glutamicum for 2-Ketoisovalerate Production , 2010, Applied and Environmental Microbiology.

[180]  G. Stephanopoulos,et al.  Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? , 2009, Nature Reviews Microbiology.

[181]  J. Kalinowski,et al.  The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules , 2008, BMC Genomics.

[182]  B. Hwang,et al.  Corynebacterium glutamicum Utilizes both Transsulfuration and Direct Sulfhydrylation Pathways for Methionine Biosynthesis , 2002, Journal of bacteriology.

[183]  K. Keiler Biology of trans-translation. , 2008, Annual review of microbiology.

[184]  J. Kalinowski,et al.  The Corynebacterium glutamicum cglIM gene encoding a 5-cytosine methyltransferase enzyme confers a specific DNA methylation pattern in an McrBC-deficient Escherichia coli strain. , 1997, Gene.

[185]  A. Demain,et al.  Genetic improvement of processes yielding microbial products. , 2006, FEMS microbiology reviews.

[186]  Oleg A Igoshin,et al.  Transient heterogeneity in extracellular protease production by Bacillus subtilis , 2008, Molecular systems biology.

[187]  Nicolas Jaccard,et al.  Microfluidic approaches for systems and synthetic biology. , 2010, Current opinion in biotechnology.

[188]  Jim Berg,et al.  A genetically encoded fluorescent reporter of ATP/ADP ratio , 2008, Nature Methods.

[189]  Guillermo Gosset,et al.  Growth‐rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose‐phosphate pathway , 2004, Biotechnology and bioengineering.

[190]  V. Wendisch Amino acid biosynthesis : pathways, regulation and metabolic engineering , 2007 .

[191]  Christopher A. Voigt,et al.  Performance Characteristics for Sensors and Circuits Used to Program E. coli , 2009 .

[192]  R. Losick,et al.  Bistability in bacteria , 2006, Molecular microbiology.

[193]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[194]  J. Ohnishi,et al.  A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient l-lysine production , 2006, Journal of Industrial Microbiology and Biotechnology.

[195]  C. Wittmann,et al.  Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR. , 2008, Microbiology.

[196]  Alexander M. Jones,et al.  Quantitative imaging with fluorescent biosensors. , 2012, Annual review of plant biology.

[197]  G. Perdew,et al.  Regulation of Gene Expression , 2008, Goodman's Medical Cell Biology.

[198]  T. Elston,et al.  Stochasticity in gene expression: from theories to phenotypes , 2005, Nature Reviews Genetics.

[199]  Michael Bott,et al.  Toward Homosuccinate Fermentation: Metabolic Engineering of Corynebacterium glutamicum for Anaerobic Production of Succinate from Glucose and Formate , 2012, Applied and Environmental Microbiology.

[200]  R Takors,et al.  Scale-up of microbial processes: impacts, tools and open questions. , 2012, Journal of biotechnology.

[201]  Frances H. Arnold,et al.  Directed enzyme evolution : screening and selection methods , 2003 .

[202]  S. O’Connor,et al.  Rapid identification of enzyme variants for reengineered alkaloid biosynthesis in periwinkle. , 2007, Chemistry & biology.

[203]  Sukhyeong Cho,et al.  The gene encoding the alternative thymidylate synthase ThyX is regulated by sigma factor SigB in Corynebacterium glutamicum ATCC 13032. , 2012, FEMS microbiology letters.

[204]  V. Aleshin,et al.  Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in Escherichia coli. , 2003, Research in microbiology.

[205]  C. Gualerzi,et al.  Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control , 2002, Molecular microbiology.

[206]  Hernan G. Garcia,et al.  Transcriptional Regulation by the Numbers 2: Applications , 2004, q-bio/0412011.

[207]  Sha Jin,et al.  A glucose sensor protein for continuous glucose monitoring. , 2010, Biosensors & bioelectronics.

[208]  Christoph Wittmann,et al.  Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. , 2006, Metabolic engineering.

[209]  R. Figge,et al.  Methionine Biosynthesis in Escherichia coli and Corynebacterium glutamicum , 2006 .

[210]  Masayuki Inui,et al.  Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum , 2011, Applied Microbiology and Biotechnology.

[211]  Matthias Heinemann,et al.  Mass spectrometric method for analyzing metabolites in yeast with single cell sensitivity. , 2008, Angewandte Chemie.

[212]  C. Hewitt,et al.  Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. , 2000, Journal of microbiological methods.

[213]  E. Friedberg,et al.  DNA Repair and Mutagenesis , 2006 .