Aging Mechanisms of Electrode Materials in Lithium-Ion Batteries for Electric Vehicles

Electrode material aging leads to a decrease in capacity and/or a rise in resistance of the whole cell and thus can dramatically affect the performance of lithium-ion batteries. Furthermore, the aging phenomena are extremely complicated to describe due to the coupling of various factors. In this review, we give an interpretation of capacity/power fading of electrode-oriented aging mechanisms under cycling and various storage conditions for metallic oxide-based cathodes and carbon-based anodes. For the cathode of lithium-ion batteries, the mechanical stress and strain resulting from the lithium ions insertion and extraction predominantly lead to structural disordering. Another important aging mechanism is the metal dissolution from the cathode and the subsequent deposition on the anode. For the anode, the main aging mechanisms are the loss of recyclable lithium ions caused by the formation and increasing growth of a solid electrolyte interphase (SEI) and the mechanical fatigue caused by the diffusion-induced stress on the carbon anode particles. Additionally, electrode aging largely depends on the electrochemical behaviour under cycling and storage conditions and results from both structural/morphological changes and side reactions aggravated by decomposition products and protic impurities in the electrolyte.

[1]  C. Moo,et al.  Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries , 2009 .

[2]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[3]  J. Fergus,et al.  Lithium Ion Battery Anode Aging Mechanisms , 2013, Materials.

[4]  Delphine Riu,et al.  A review on lithium-ion battery ageing mechanisms and estimations for automotive applications , 2013 .

[5]  Robert Kostecki,et al.  Degradation of LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cathode surfaces in high-power lithium-ion batteries , 2002 .

[6]  Kamen Nechev,et al.  Properties of large Li ion cells using a nickel based mixed oxide , 2003 .

[7]  X. Qiu,et al.  Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery , 2007 .

[8]  Doron Aurbach,et al.  On the capacity fading of LiCoO2 intercalation electrodes:: the effect of cycling, storage, temperature, and surface film forming additives , 2002 .

[9]  Petr Novák,et al.  The influence of the local current density on the electrochemical exfoliation of graphite in lithium-ion battery negative electrodes , 2011 .

[10]  M. Wohlfahrt‐Mehrens,et al.  Doped lithium nickel cobalt mixed oxides for the positive electrode in lithium ion batteries , 2002 .

[11]  L. Archer,et al.  Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes. , 2008 .

[12]  Miaofang Chi,et al.  Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study , 2011 .

[13]  M. Verbrugge,et al.  Modeling diffusion-induced stress in nanowire electrode structures , 2010 .

[14]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[15]  N. Yamazoe,et al.  Effects of B site partial substitutions of perovskite-type La0.6Sr0.4CoO3 on oxygen desorption , 1989 .

[16]  M. Nakayama,et al.  Local Structural Studies of LiCr y Mn 2 - y O 4 Cathode Materials for Li-Ion Batteries , 2003 .

[17]  Daniel P. Abraham,et al.  Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells , 2002 .

[18]  Jiayan Luo,et al.  Aqueous Lithium-ion Battery LiTi2(PO4)3/LiMn2O4 with High Power and Energy Densities as well as Superior Cycling Stability , 2007 .

[19]  P. He,et al.  Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries , 2012 .

[20]  Guangmin Zhou,et al.  Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. , 2010, ACS nano.

[21]  Young Han Kim,et al.  Development of a metal recovery process from Li-ion battery wastes , 2005 .

[22]  K. Goebel,et al.  An integrated approach to battery health monitoring using bayesian regression and state estimation , 2007, 2007 IEEE Autotestcon.

[23]  Yong Yang,et al.  The effects of sintering temperature and time on the structure and electrochemical performance of LiNi0.8Co0.2O2 cathode materials derived from sol-gel method , 2003 .

[24]  Junwei Jiang,et al.  The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte , 2007 .

[25]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[26]  Feng Wu,et al.  Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. , 2010, Journal of hazardous materials.

[27]  W. Haiss,et al.  Adsorbate-induced surface stress at the solid|electrolyte interface measured with an STM , 1995 .

[28]  Lisa C. Klein,et al.  Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries , 1996 .

[29]  G. Fey,et al.  Enhanced cyclability and thermal stability of LiCoO2 coated with cobalt oxides , 2005 .

[30]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[31]  Baohua Li,et al.  Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery , 2011 .

[32]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[33]  Song-Yul Choe,et al.  Development of a physics-based degradation model for lithium ion polymer batteries considering side reactions , 2015 .

[34]  Xiaoping Shen,et al.  Graphene nanosheets for enhanced lithium storage in lithium ion batteries , 2009 .

[35]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[36]  Haoshen Zhou,et al.  Enhancing the performances of Li-ion batteries by carbon-coating: present and future. , 2012, Chemical communications.

[37]  Keqiang Qiu,et al.  Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. , 2011, Journal of hazardous materials.

[38]  Hans-Dieter Wiemhöfer,et al.  The impact of calendar aging on the thermal stability of a LiMn2O4–Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell , 2014 .

[39]  Qiao Yan Chen,et al.  Estimation of Electric Vehicle Battery Ohmic Resistance Using Dual Extend Kalman Filter , 2013 .

[40]  C. Julien,et al.  Synthesis, structure and electrochemistry of LiMn2 − yAlyO4 prepared by a wet-chemistry method , 2001 .

[41]  Maria Forsyth,et al.  Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries , 1999, Nature.

[42]  A. Manthiram,et al.  Phase Relationships and Structural and Chemical Stabilities of Charged Li1 − x CoO2 − δ and Li1 − x Ni0.85Co0.15 O 2 − δ Cathodes , 2003 .

[43]  Yuhong Chen,et al.  Synthesis and characterization of Li1.05Co1/3Ni1/3Mn1/3O1.95X0.05 (X = Cl, Br) cathode materials for lithium-ion battery , 2013 .

[44]  O. Mentré,et al.  Influence of the synthesis route on the formation of 12R/10H-polytypes and their magnetic properties within the Ba(Ce,Mn)O3 family , 2015 .

[45]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[46]  Kang Xu,et al.  Understanding Solid Electrolyte Interface Film Formation on Graphite Electrodes , 2001 .

[47]  Bernard Nysten,et al.  Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy , 2004 .

[48]  U. Troeltzsch,et al.  Characterizing aging effects of lithium ion batteries by impedance spectroscopy , 2006 .

[49]  A. Manthiram,et al.  Role of Chemical and Structural Stabilities on the Electrochemical Properties of Layered LiNi1 ∕ 3Mn1 ∕ 3Co1 ∕ 3O2 Cathodes , 2005 .

[50]  Yi Cui,et al.  Ultrathin Spinel LiMn 2 O 4 Nanowires as High Power Cathode Materials for Li-Ion Batteries , 2010 .

[51]  I. Hussein,et al.  Recent advances in dye sensitized solar cells , 2014 .

[52]  John T. Vaughey,et al.  Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study , 2001 .

[53]  Koichi Hirao,et al.  Characterization of Electrode Materials during Degradation Process of Li-ion Batteries. , 2002 .

[54]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[55]  C. Poinsignon,et al.  Structural-chemical disorder of manganese dioxides 1. Influence on surface properties at the solid-electrolyte interface. , 2003, Journal of colloid and interface science.

[56]  M. Wohlfahrt‐Mehrens,et al.  The influence of doping on the operation of lithium manganese oxide spinel , 1997 .

[57]  Junmin Nan,et al.  Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries , 2006 .

[58]  J. Tarascon,et al.  Electrochemical and structural study of the 3.3 V reduction step in defective LixMn2O4 and LiMn2O(4−y)Fy compounds , 1999 .

[59]  Tsutomu Ohzuku,et al.  Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries , 2003 .

[60]  Rui Xiong,et al.  A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles , 2014 .

[61]  E. Culea,et al.  Structural and electrochemical investigations of the electrodes obtained by recycling of lead acid batteries , 2016 .

[62]  Jaephil Cho,et al.  Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials , 2008 .

[63]  Itaru Honma,et al.  Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. , 2009, Nano letters.

[64]  J. Dahn,et al.  Studies of LiCoO2 Coated with Metal Oxides , 2003 .

[65]  W. Craig Carter,et al.  Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines , 2010 .

[66]  Zaiping Guo,et al.  α-Fe2O3 as an anode material with capacity rise and high rate capability for lithium-ion batteries , 2011 .

[67]  Yong Yang,et al.  The effects of sintering temperature and time on the structure and electrochemical performance of LiNi0.8Co0.2O2 cathode materials derived from sol-gel method , 2003 .

[68]  Yanming Ma,et al.  Predicted novel high-pressure phases of lithium. , 2011, Physical review letters.

[69]  S. Vyazovkin On the phenomenon of variable activation energy for condensed phase reactions , 2000 .

[70]  Jun Chen,et al.  LiNi(0.5)Mn(1.5)O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. , 2013, Nano letters.

[71]  B. Dong,et al.  Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery , 2007 .

[72]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[73]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[74]  Dawei Liu,et al.  Effect of manganese doping on Li-ion intercalation properties of V2O5 films , 2010 .

[75]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries , 2010 .

[76]  T. Prem kumar,et al.  Nanostructured electrode materials for electrochemical energy storage and conversion , 2013 .

[77]  M. Wakihara,et al.  The effect of chromium substitution on the phase transition of lithium manganese spinel oxides , 2004 .

[78]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[79]  Roger A. Dougal,et al.  Dynamic lithium-ion battery model for system simulation , 2002 .

[80]  N. Rezlescu,et al.  Effect of substitution of divalent ions on the electrical and magnetic properties of Ni-Zn-Me ferrites , 2000 .

[81]  S. Komaba,et al.  Manganese Dissolution from Lithium Doped Li-Mn-O Spinel Cathode Materials into Electrolyte Solution , 2001 .

[82]  Volkan Cicek,et al.  Synthesis and Characterization of Salts and Esters of Hydroxy Acids as Corrosion Inhibitors for Mild Steel and Aluminum Alloys , 2011 .

[83]  M. Hon,et al.  Crystallization mechanism of LiNiO2 synthesized by Pechini method , 2001 .

[84]  F. Uhlig,et al.  Thermal aging of electrolytes used in lithium-ion batteries – An investigation of the impact of protic impurities and different housing materials , 2014 .

[85]  Chaoyang Wang,et al.  Control oriented 1D electrochemical model of lithium ion battery , 2007 .

[86]  G. Amatucci,et al.  High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials : Electrochemical impact of electronic conductivity and morphology , 2006 .

[87]  Yong Yang,et al.  A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells , 2008 .

[88]  Christopher D. Rahn,et al.  Model-Based Electrochemical Estimation and Constraint Management for Pulse Operation of Lithium Ion Batteries , 2010, IEEE Transactions on Control Systems Technology.

[89]  Jaephil Cho,et al.  Improvement of Structural Stability of LiMn2 O 4 Cathode Material on 55 ° C Cycling by Sol‐Gel Coating of LiCoO2 , 1999 .

[90]  S. Lanfredi,et al.  Phase transition in sodium lithium niobate polycrystal: an overview based on impedance spectroscopy , 2001 .

[91]  Dirk Uwe Sauer,et al.  Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application , 2013 .

[92]  Hongwen He,et al.  A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles , 2013 .

[93]  Jin-Song Hu,et al.  Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium‐Ion Batteries , 2008 .

[94]  Andreas Poullikkas,et al.  Overview of current and future energy storage technologies for electric power applications , 2009 .

[95]  Saibal Roy,et al.  Magnetic properties of oxide-coated iron nanoparticles synthesized by electrodeposition , 2000 .

[96]  Hyun-Wook Lee,et al.  Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. , 2010, Nano letters.

[97]  C. Pérez-Vicente,et al.  Cation distribution and chemical deintercalation of Li1-xNi1+xO2 , 1990 .

[98]  Hongwen He,et al.  A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles , 2014 .

[99]  A. Hirano,et al.  Neutron diffraction study of the layered Li0.5 − xNi1 + xO2 , 1996 .

[100]  T. Ogihara,et al.  Powder Characterization and Electrochemical Properties of LiNi0.5Mn1.5O4 Cathode Materials Produced by Large Spray Pyrolysis Using Flame Combustion , 2011 .

[101]  O. Borodin,et al.  Interfacial structure and dynamics of the lithium alkyl dicarbonate SEI components in contact with the lithium battery electrolyte , 2014 .

[102]  Hongwen He,et al.  A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique , 2016 .

[103]  T. Nam,et al.  Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films , 2014 .

[104]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[105]  Peng Lu,et al.  Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films during Formation in Lithium Ion Batteries , 2014 .

[106]  J. Dahn,et al.  Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells , 1994 .

[107]  Anthony F. Matasso,et al.  The Effects of Internal Pressure Evolution on the Aging of Commercial Li-Ion Cells , 2014 .

[108]  B. N. Popov,et al.  Studies on Capacity Fade of Lithium-Ion Batteries , 2000 .

[109]  M. Okada,et al.  Structural analysis of lithium-excess lithium manganate cathode materials by 7Li magic-angle spinning nuclear magnetic resonance spectroscopy , 2001 .

[110]  K. Nikolowski,et al.  Phase Transitions Occurring upon Lithium Insertion−Extraction of LiCoPO4 , 2007 .

[111]  K. Amine,et al.  Synthesis of Nanostructured Li[Ni1/3Co1/3Mn1/3]O2 via a Modified Carbonate Process , 2006 .

[112]  B. Hwang,et al.  Aging Effects to Solid Electrolyte Interface (SEI) Membrane Formation and the Performance Analysis of Lithium Ion Batteries , 2011, International Journal of Electrochemical Science.

[113]  G. Ceder,et al.  Local Structure and Cation Ordering in O3 Lithium Nickel Manganese Oxides with Stoichiometry , 2004 .

[114]  K. Amine,et al.  Symmetric cell approach towards simplified study of cathode and anode behavior in lithium ion batteries. , 2001 .

[115]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[116]  Y. Moritomo,et al.  Synchrotron-Radiation X-Ray Investigation of Li+/Na+ Intercalation into Prussian Blue Analogues , 2013 .

[117]  M. Wohlfahrt‐Mehrens,et al.  Electrochemical and thermal behavior of aluminum- and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1−x(Ni1−y−zCoyMz)O2 (M = Al, Mg) , 2003 .

[118]  M. Wohlfahrt‐Mehrens,et al.  Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study , 2014 .

[119]  T. Furtak Anomalously intense Raman scattering at the solid-electrolyte interface , 1978 .