CHAPTER 8 : Orbital Ephemerides of the Sun , Moon , and Planets

The fundamental planetary and lunar ephemerides of The Astronomical Almanac, starting in the year 2003, are DE405/LE405 of Caltech’s Jet Propulsion Laboratory (JPL). They replace JPL’s DE200 which have been used in the almanac since 1984. Previous to 1984, the fundamental ephemerides were based upon analytical “theories”; these are described in Section 8.2. DE405/LE405 result from a least-squares adjustment of a previously existing ephemeris to a variety of observational data (measurements), followed by a numerical integration of the dynamical equations of motion which describe the gravitational physics of the solar system. These fundamental ephemerides are the bases for computing the planetary and lunar positions and other related phenomena that are listed in the almanac.

[1]  E. W. Brown,et al.  Tables of the motion of the moon , 1919 .

[2]  G. M. Clemence,et al.  Coordinates of the five outer planets, 1653-2060 , 1951 .

[3]  G. M. Clemence,et al.  Aberration in the lunar ephemeris , 1952 .

[4]  G. M. Clemence Perturbations of the five outer planets by the four inner ones , 1954 .

[5]  P. Stumpff,et al.  Fourth Fundamental Catalogue (FK4) , 1963 .

[6]  I. Shapiro Fourth Test of General Relativity , 1964 .

[7]  W. J. Eckert,et al.  Transformations of the lunar coordinates and orbital parameters , 1966 .

[8]  W. J. Eckert,et al.  A note on the evaluation of the latitude of the Moon , 1969 .

[9]  T. D. Moyer Mathematical formulation of the Double Precision Orbit Determination Program /DPODP/ , 1971 .

[10]  W. Fricke REDISCUSSION OF NEWCOMB'S DETERMINATION OF PRECESSION. , 1971 .

[11]  T. Lederle,et al.  Expressions for the precession quantities based upon the IAU /1976/ system of astronomical constants , 1977 .

[12]  R. Lyttleton,et al.  Nutation of Mars , 1979 .

[13]  Eric M. Eliason,et al.  Pioneer Venus Radar results altimetry and surface properties , 1980 .

[14]  E. Standish,et al.  Astrolabe observations of Mars , 1981 .

[15]  Donald H. Eckhardt,et al.  Theory of the libration of the moon , 1981 .

[16]  J. D. Anderson,et al.  Solar wind electron densities from Viking dual-frequency radio measurements , 1981 .

[17]  E. M. Standish,et al.  Orientation of the JPL Ephemerides, DE 200/LE 200, to the dynamical equinox of J 2000 , 1982 .

[18]  H. Schwan A method for the determination of a system of positions and proper motions of stars with an application to the Washington 6 inch TC observations , 1983 .

[19]  E. M. Standish,et al.  DE 102: a numerically integrated ephemeris of the moon and planets spanning forty-four centuries. , 1983 .

[20]  James G. Williams,et al.  Determining asteroid masses from perturbations on Mars , 1984 .

[21]  A. Niell,et al.  Precise position measurements of jupiter, saturn and uranus systems with the very large array , 1985 .

[22]  A. Niell,et al.  Precise VLA positions and flux-density measurements of the Jupiter system , 1986 .

[23]  X X Newhall Numerical representation of planetary ephemerides , 1988 .

[24]  D. Muhleman,et al.  Very Large Array observations of Uranus at 2.0 cm , 1988 .

[25]  E. Standish The observational basis for JPL's DE 200, the planetary ephemerides of the Astronomical Almanac , 1990 .

[26]  E. Standish,et al.  Dynamical reference frames in the planetary and earth-moon systems , 1990 .

[27]  James G. Williams,et al.  Contributions to the Earth's Obliquity Rate, Precession, and Nutation , 1994 .

[28]  E. M. Standish,et al.  Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements , 1994 .

[29]  Martin A. Slade,et al.  Shape and Orientation of Mercury from Radar Ranging Data , 1995 .

[30]  R. Stone CCD Positions for the Outer Planets in 1996-1997 Determined in the Extragalactic Reference Frame , 1996 .

[31]  X. X. Newhall,et al.  Estimation of the lunar physical librations , 1996 .

[32]  E. M. Standish,et al.  TIME SCALES IN THE JPL AND CFA EPHEMERIDES , 1998 .

[33]  Patrick Charlot,et al.  The International Celestial Reference Frame as Realized by Very Long Baseline Interferometry , 1998 .

[34]  F. Harris,et al.  CCD Positions Determined in the International Celestial Reference Frame for the Outer Planets and Many of Their Satellites in 1995-1999 , 2000 .

[35]  J. T. Ratcliff,et al.  Lunar rotational dissipation in solid body and molten core , 2001 .

[36]  T. D. Moyer Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation , 2003 .

[37]  E. M. Standish,et al.  An approximation to the errors in the planetary ephemerides of the Astronomical Almanac , 2004 .