Phycobiliproteins, nitrogenous compounds and fatty acid contents in field-collected and cultured gametophytes of Porphyra dioica, a red sea vegetable

[1]  E. Serrão,et al.  Polyploid lineages in the genus Porphyra , 2018, Scientific Reports.

[2]  Freddy Guihéneuf,et al.  Temporal and spatial variability of mycosporine-like amino acids and pigments in three edible red seaweeds from western Ireland , 2018, Journal of Applied Phycology.

[3]  Freddy Guihéneuf,et al.  Ecological and commercial implications of temporal and spatial variability in the composition of pigments and fatty acids in five Irish macroalgae , 2017 .

[4]  V. Ferreira,et al.  Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus , 2016, Journal of applied microbiology.

[5]  D. Stengel,et al.  Prospects and challenges for industrial production of seaweed bioactives , 2015, Journal of phycology.

[6]  Freddy Guihéneuf,et al.  Towards the biorefinery concept: Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum , 2015 .

[7]  J. García-Plazaola,et al.  Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. , 2015, The New phytologist.

[8]  F. Figueroa,et al.  Short-term effects of CO2, nutrients and temperature on three marine macroalgae under solar radiation , 2014 .

[9]  D. Stengel,et al.  Fatty acid contents and profiles of 16 macroalgae collected from the Irish Coast at two seasons , 2014, Journal of Applied Phycology.

[10]  R. Fitzgerald,et al.  Characterisation of protein‐rich isolates and antioxidative phenolic extracts from pale and black brewers' spent grain , 2013 .

[11]  René H Wijffels,et al.  The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. , 2012, Bioresource technology.

[12]  D. Stengel,et al.  Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. , 2011, Biotechnology advances.

[13]  D. Stengel,et al.  Impacts of ambient salinity and copper on brown algae: 2. Interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin. , 2011, Aquatic toxicology.

[14]  M. Stekoll,et al.  PHYCOBILIN CONTENT OF THE CONCHOCELIS PHASE OF ALASKAN PORPHYRA (BANGIALES, RHODOPHYTA) SPECIES: RESPONSES TO ENVIRONMENTAL VARIABLES 1 , 2011, Journal of Phycology.

[15]  P. Escribá,et al.  Oleic acid content is responsible for the reduction in blood pressure induced by olive oil , 2008, Proceedings of the National Academy of Sciences.

[16]  I. Sousa-Pinto,et al.  Nitrogen uptake by gametophytes of Porphyra dioica (Bangiales, Rhodophyta) under controlled-culture conditions , 2008 .

[17]  M. Guiry,et al.  SEASONAL GROWTH AND PHENOTYPIC VARIATION IN PORPHYRA LINEARIS (RHODOPHYTA) POPULATIONS ON THE WEST COAST OF IRELAND 1 , 2007 .

[18]  N. Morgan,et al.  Differential protective effects of palmitoleic acid and cAMP on caspase activation and cell viability in pancreatic β-cells exposed to palmitate , 2006, Apoptosis.

[19]  I. Sousa-Pinto,et al.  The influence of stocking density, light and temperature on the growth, production and nutrient removal capacity of Porphyra dioica (Bangiales, Rhodophyta) , 2006 .

[20]  Owen P. Ward,et al.  Omega-3/6 fatty acids: Alternative sources of production , 2005 .

[21]  Ryoji Matsushima,et al.  Inhibitory Effect of Porphyran, Prepared from Dried “Nori”, on Contact Hypersensitivity in Mice , 2005, Bioscience, biotechnology, and biochemistry.

[22]  M. Guiry,et al.  The use of image processing in assessing conchocelis growth and conchospore production in Porphyra linearis , 2004 .

[23]  Ning Li,et al.  In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. , 2003, Pharmacological research.

[24]  B. Martínez,et al.  SEASONAL VARIATION OF P CONTENT AND MAJOR N POOLS IN PALMARIA PALMATA (RHODOPHYTA) 1 , 2002 .

[25]  Lawrence J Appel,et al.  Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[26]  S. Hotimchenko Fatty Acid Composition of Algae from Habitats with Varying Amounts of Illumination , 2002, Russian Journal of Marine Biology.

[27]  K. Morita,et al.  Increasing Effect of Nori on the Fecal Excretion of Dioxin by Rats , 2002, Bioscience, biotechnology, and biochemistry.

[28]  M. G. Tasende Fatty acid and sterol composition of gametophytes and sporophytes of Chondrus crispus (Gigartinaceae, Rhodophyta) , 2000 .

[29]  Rulong Lin Physiological ecology of Porphyra sporophytes: growth, photosynthesis, respiration and pigments , 2000 .

[30]  R. Abbott,et al.  Serum lipid effects of a high-monounsaturated fat diet based on macadamia nuts. , 2000, Archives of internal medicine.

[31]  F. Figueroa,et al.  Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticta , 1997 .

[32]  Y. Yano,et al.  Identification of antimutagenic substances in an extract of edible red alga, Porphyra tenera (Asakusa-nori) , 1996, Cancer letters.

[33]  T. Chopin,et al.  PHOSPHORUS AND NITROGEN NUTRITION IN CHONDRUS CRISPUS (RHODOPHYTA): EFFECTS ON TOTAL PHOSPHORUS AND NITROGEN CONTENT, CARRAGEENAN PRODUCTION, AND PHOTOSYNTHETIC PIGMENTS AND METABOLISM 1 , 1995 .

[34]  P. Roessler,et al.  RADIOLABELING STUDIES OF LIPIDS AND FATTY ACIDS IN NANNOCHLOROPSIS (EUSTIGMATOPHYCEAE), AN OLEAGINOUS MARINE ALGA 1 , 1994 .

[35]  S. Kaminogawa,et al.  Activation of murine macrophages by polysaccharide fractions from marine algae (Porphyra yezoensis). , 1993, Bioscience, biotechnology, and biochemistry.

[36]  P. Thompson,et al.  INFLUENCE OF IRRADIANCE ON THE FATTY ACID COMPOSITION OF PHYTOPLANKTON 1 , 1990 .

[37]  J. Walter,et al.  Carrageenans in the gametophytic and sporophytic stages of Chondrus crispus , 1973, Planta.

[38]  K. Drew Conchocelis-Phase in the Life-History of Porphyra umbilicalis (L.) Kütz. , 1949, Nature.

[39]  THE EFFECTS OF SOLAR RADIATION , 1932 .

[40]  J. Brodie,et al.  Porphyra: a marine crop shaped by stress. , 2011, Trends in plant science.

[41]  Chopin,et al.  PHOSPHORUS AND NITROGEN NUTRITION IN CHONDRUS CRISPUS ( RHODOPHYTA ) : EFFECTS ON TOTAL PHOSPHORUS AND NITROGEN CONTENT , CARRAGEENAN PRODUCTION , AND PHOTOSYNTHETIC PIGMENTS AND METABOLISM ’ , 2006 .

[42]  S. Khotimchenko Variations in lipid composition among different developmental stages of Gracilaria verrucosa (Rhodophyta) , 2006 .

[43]  D. Sahoo,et al.  Porphyra - the economic seaweed as a new experimental system. , 2002 .

[44]  A. Sloan The Top 10 Functional Food Trends: The Next Generation , 2002 .

[45]  S. Teshima,et al.  The Fatty Acid Composition of Seaweeds Exposed to Different Levels of Light Intensity and Salinity , 1998 .

[46]  C. M. Hasler,et al.  Functional foods: their role in disease prevention and health promotion , 1998 .

[47]  P. Harrison,et al.  Seaweed ecology and physiology: References , 1994 .

[48]  Y. Chamberlain,et al.  Seaweeds of the British Isles: Volume 1 Rhodophyta. Part 2B Corallinales, Hildenbrandiales , 1994 .

[49]  S. Hashimoto,et al.  Antitumour activity of polysaccharides and lipids from marine algae. , 1989 .

[50]  T. Mumford,et al.  Porphyra as food: cultivation and economics , 1988 .

[51]  S. Beer,et al.  Determining Phycoerythrin and Phycocyanin Concentrations in Aqueous Crude Extracts of Red Algae , 1985 .