Global carbon budget 2013

Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen–carbon interactions). All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.5 ± 0.5 GtC yr−1, and SLAND 2.8 ± 0.8 GtC yr−1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr−1, 2.2% above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and assuming an ELUC of 1.0 ± 0.5 GtC yr−1 (based on the 2001–2010 average), SLAND was 2.7 ± 0.9 GtC yr−1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1% (1.1–3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870–2013, about 70% from EFF (390 ± 20 GtC) and 30% from ELUC (145 ± 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quere et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center ( doi:10.3334/CDIAC/GCP_2013_V2.3 ).

Atul K. Jain | Joanna Isobel House | Taro Takahashi | Ian Harris | Philippe Ciais | Fabienne Maignan | Gregg Marland | Pierre Friedlingstein | Stephen Sitch | Benjamin Poulter | Scott C. Doney | Glen P. Peters | Nicolas Viovy | Benjamin Pfeil | Pierre Regnier | Josep G. Canadell | S. van Heuven | Pieter P. Tans | Arne Körtzinger | Richard A. Houghton | Geun-Ha Park | Almut Arneth | C. Le Quéré | Michael R. Raupach | Joachim Segschneider | Kees Klein Goldewijk | Dorothee C. E. Bakker | Charles D. Koven | Robbie M. Andrew | Sönke Zaehle | Nathalie Lefèvre | Andy Wiltshire | R. Wanninkhof | Ralph F. Keeling | Abdirahman M Omar | Bronte Tilbrook | Christian Rödenbeck | Laurent Bopp | Robert J. Andres | Jörg Schwinger | Benjamin D. Stocker | Louise Chini | J. Canadell | A. Arneth | P. Ciais | S. Zaehle | B. Poulter | P. Friedlingstein | R. Houghton | G. Peters | R. Andrew | C. Quéré | M. Raupach | S. Doney | F. Maignan | B. Tilbrook | S. Sitch | L. Bopp | N. Viovy | C. Rödenbeck | P. Tans | J. House | K. K. Goldewijk | C. Koven | L. Chini | I. Harris | Etsushi Kato | B. Stocker | G. Marland | T. Boden | J. Segschneider | R. Andres | P. Régnier | A. Wiltshire | R. Wanninkhof | Taro Takahashi | D. Bakker | R. Keeling | A. Körtzinger | N. Lefèvre | A. Omar | T. Ono | J. Schwinger | B. Pfeil | S. V. Heuven | A. Harper | R. Moriarty | S. Saito | S. Jones | G. Park | Anna B. Harper | R. Moriarty | Thomas A. Boden | S. D. Jones | A. Arvanitis | Etsushi Kato | T. Ono | S. Saito | A. Arvanitis

[1]  Carl Ekdahl,et al.  Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii , 1976 .

[2]  R. T. Watson,et al.  Greenhouse gases and aerosols , 1990 .

[3]  R. Pielke,et al.  Estimating the Soil Surface Specific Humidity , 1992 .

[4]  Pieter P. Tans,et al.  Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record , 1995 .

[5]  J. Houghton,et al.  Climate change 1995: the science of climate change. , 1996 .

[6]  D. Etheridge,et al.  Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn , 1996 .

[7]  F. Joos,et al.  Terrestrial carbon storage during the past 200 years: A Monte Carlo Analysis of CO2 data from ice core and atmospheric measurements , 1997 .

[8]  Ranga B. Myneni,et al.  Estimation of global leaf area index and absorbed par using radiative transfer models , 1997, IEEE Trans. Geosci. Remote. Sens..

[9]  G. Marland,et al.  Carbon dioxide emissions from fossil‐fuel use, 1751–1950 , 1999 .

[10]  K. Shine Radiative Forcing of Climate Change , 2000 .

[11]  K. Shine Radiative Forcing of Climate Change , 2000 .

[12]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[13]  Robert J. Scholes,et al.  The Carbon Cycle and Atmospheric Carbon Dioxide , 2001 .

[14]  X. Yin Responses of leaf nitrogen concentration and specific leaf area to atmospheric CO2 enrichment: a retrospective synthesis across 62 species , 2002 .

[15]  A. Jacobson,et al.  A joint atmosphere‐ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global‐scale fluxes , 2007 .

[16]  Nicolas Gruber,et al.  A joint atmosphere‐ocean inversion for surface fluxes of carbon dioxide: 2. Regional results , 2003 .

[17]  Sander Houweling,et al.  CO 2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport , 2003 .

[18]  J. Sarmiento,et al.  Anthropogenic CO2 Uptake by the Ocean Based on the Global Chlorofluorocarbon Data Set , 2003, Science.

[19]  P. Ciais,et al.  Amplifying effects of land‐use change on future atmospheric CO2 levels , 2003 .

[20]  R. Houghton Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850 – 2000 , 2003 .

[21]  I. C. Prentice,et al.  Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model , 2003 .

[22]  F. Woodward,et al.  Vegetation dynamics – simulating responses to climatic change , 2004, Biological reviews of the Cambridge Philosophical Society.

[23]  D. Luckett The Supply Chain , 2004 .

[24]  I. C. Prentice,et al.  A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system , 2005 .

[25]  C. Rödenbeck Estimating CO2 sources and sinks from atmospheric mixing ratio measurements using a global inversion of atmospheric transport , 2005 .

[26]  L. Bopp,et al.  Globalizing results from ocean in situ iron fertilization studies , 2006 .

[27]  Martin Jung,et al.  Exploiting synergies of global land cover products for carbon cycle modeling , 2006 .

[28]  Gregg Marland,et al.  Energy, industry, and waste management activities : an introduction to CO2 emissions from fossil fuels. Part II Overview , 2006 .

[29]  Tsutomu Ikeda,et al.  Biogeochemical fluxes through mesozooplankton , 2006 .

[30]  K. Lindsay,et al.  Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean , 2006 .

[31]  J. Downing,et al.  Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget , 2007, Ecosystems.

[32]  A. Manning,et al.  Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network , 2006 .

[33]  R. Dickinson,et al.  Couplings between changes in the climate system and biogeochemistry , 2007 .

[34]  G. P. Zimmerman,et al.  The first state of the carbon cycle report (SOCCR): The North American carbon budget and implications for the global carbon cycle. , 2007 .

[35]  J. Canadell,et al.  Global and regional drivers of accelerating CO2 emissions , 2007, Proceedings of the National Academy of Sciences.

[36]  Corinne Le Quéré,et al.  Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks , 2007, Proceedings of the National Academy of Sciences.

[37]  J. Sarmiento,et al.  Correction to “A joint atmosphere‐ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global‐scale fluxes” , 2007 .

[38]  Benjamin Smith,et al.  Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space , 2008 .

[39]  Gregg Marland,et al.  Uncertainties in Accounting for CO2 From Fossil Fuels , 2008 .

[40]  J. Randerson,et al.  Climate regulation of fire emissions and deforestation in equatorial Asia , 2008, Proceedings of the National Academy of Sciences.

[41]  F. Joos,et al.  Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years , 2008, Proceedings of the National Academy of Sciences.

[42]  G. Marland Uncertainties in Accounting for CO 2 From Fossil Fuels , 2008 .

[43]  Gregg Marland,et al.  China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production , 2008 .

[44]  E. Hertwich,et al.  Post-Kyoto greenhouse gas inventories: production versus consumption , 2008 .

[45]  Corinne Le Quéré,et al.  Closing the global budget for CO2 , 2009 .

[46]  Christoph Heinze,et al.  An isopycnic ocean carbon cycle model , 2009 .

[47]  Corinne Le Quéré,et al.  Trends in the sources and sinks of carbon dioxide , 2009 .

[48]  V. Brovkin,et al.  Atmospheric lifetime of fossil-fuel carbon dioxide , 2009 .

[49]  P. Cox,et al.  Impact of changes in diffuse radiation on the global land carbon sink , 2009, Nature.

[50]  George C. Hurtt,et al.  Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink , 2009 .

[51]  A. Gnanadesikan,et al.  Regional impacts of iron-light colimitation in a global biogeochemical model , 2009 .

[52]  John M. Melack,et al.  Lakes and reservoirs as regulators of carbon cycling and climate , 2009 .

[53]  J. Randerson,et al.  Assessing variability and long-term trends in burned area by merging multiple satellite fire products , 2009 .

[54]  S. Khatiwala,et al.  Reconstruction of the history of anthropogenic CO2 concentrations in the ocean , 2009, Nature.

[55]  Andreas Richter,et al.  The boundless carbon cycle , 2009 .

[56]  Bas Eickhout,et al.  The importance of three centuries of land-use change for the global and regional terrestrial carbon cycle , 2009 .

[57]  Gregg Marland,et al.  How Uncertain Are Estimates of CO2 Emissions? , 2009 .

[58]  G. Myhre,et al.  A fast method for updating global fossil fuel carbon dioxide emissions , 2009 .

[59]  E. Hertwich,et al.  Carbon footprint of nations: a global, trade-linked analysis. , 2009, Environmental science & technology.

[60]  M. Claussen,et al.  Effects of anthropogenic land cover change on the carbon cycle of the last millennium , 2009 .

[61]  K. Lindsay,et al.  Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust , 2009 .

[62]  Fortunat Joos,et al.  Sensitivity of Holocene atmospheric CO 2 and the modern carbon budget to early human land use: analyses with a process-based model , 2010 .

[63]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[64]  S. Seneviratne,et al.  Recent decline in the global land evapotranspiration trend due to limited moisture supply , 2010, Nature.

[65]  Pierre Friedlingstein,et al.  Carbon and nitrogen cycle dynamics in the O‐CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance , 2010 .

[66]  Andrew D. Friend,et al.  Carbon and nitrogen cycle dynamics in the O‐CN land surface model: 1. Model description, site‐scale evaluation, and sensitivity to parameter estimates , 2010 .

[67]  E. Buitenhuis,et al.  Biogeochemical fluxes through microzooplankton , 2010 .

[68]  Philippe Ciais,et al.  Update on CO2 emissions , 2010 .

[69]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[70]  Taro Takahashi,et al.  Variability of global net sea–air CO2 fluxes over the last three decades using empirical relationships , 2010 .

[71]  S. Davis,et al.  Consumption-based accounting of CO2 emissions , 2010, Proceedings of the National Academy of Sciences.

[72]  A. Borges,et al.  Carbon dioxide and methane dynamics in estuaries , 2010 .

[73]  G. Laruelle,et al.  Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially‐explicit typology of estuaries and continental shelves , 2010 .

[74]  Glen P. Peters,et al.  CONSTRUCTING AN ENVIRONMENTALLY-EXTENDED MULTI-REGIONAL INPUT–OUTPUT TABLE USING THE GTAP DATABASE , 2011 .

[75]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[76]  Corinne Le Quéré,et al.  Rapid growth in CO2 emissions after the 2008-2009 global financial crisis , 2011 .

[77]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes , 2011 .

[78]  Patrick M. Crill,et al.  Freshwater Methane Emissions Offset the Continental Carbon Sink , 2011, Science.

[79]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics , 2011 .

[80]  Kees Klein Goldewijk,et al.  The HYDE 3.1 spatially explicit database of human‐induced global land‐use change over the past 12,000 years , 2011 .

[81]  C. Weber,et al.  Growth in emission transfers via international trade from 1990 to 2008 , 2011, Proceedings of the National Academy of Sciences.

[82]  Steven J Davis,et al.  The supply chain of CO2 emissions , 2011, Proceedings of the National Academy of Sciences.

[83]  E. Stehfest,et al.  Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands , 2011 .

[84]  Corinne Le Quéré,et al.  Economic value of improved quantification in global sources and sinks of carbon dioxide , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[85]  A. Borges,et al.  5.04 – Carbon Dioxide and Methane Dynamics in Estuaries , 2011 .

[86]  Philippe Ciais,et al.  Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions , 2011 .

[87]  Deborah K. Smith,et al.  A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications , 2011 .

[88]  H. Tian,et al.  Net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming , 2011 .

[89]  S. Doney,et al.  Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere , 2011 .

[90]  Ahmad Al Bitar,et al.  An Analytical Model of Evaporation Efficiency for Unsaturated Soil Surfaces with an Arbitrary Thickness , 2011 .

[91]  J. B. Miller,et al.  Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years , 2012, Nature.

[92]  Jacqueline Boutin,et al.  A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT) , 2012 .

[93]  Taro Takahashi,et al.  Global ocean carbon uptake: magnitude, variability and trends , 2012 .

[94]  Corinne Le Quéré,et al.  Carbon emissions from land use and land-cover change , 2012 .

[95]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[96]  G. Peters,et al.  A synthesis of carbon in international trade , 2012 .

[97]  A. Ito,et al.  Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty , 2012 .

[98]  Corey J. A. Bradshaw,et al.  Little left to lose: deforestation and forest degradation in Australia since European colonization , 2012 .

[99]  M. Gehlen,et al.  Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change , 2012 .

[100]  J. Randerson,et al.  Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations , 2012 .

[101]  Christoph Heinze,et al.  Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM) , 2012 .

[102]  Michael J. Prather,et al.  Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry , 2012 .

[103]  Scott C. Doney,et al.  Global ocean storage of anthropogenic carbon , 2012 .

[104]  Ian G. Enting,et al.  Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics:a multi-model analysis , 2012 .

[105]  Atul K. Jain,et al.  The global carbon budget 1959-2011 , 2012 .

[106]  Sonia Yeh,et al.  Timing of carbon emissions from global forest clearance , 2012 .

[107]  Yasuhiko Hotta,et al.  Waste Management Research and Related Activities of Institute for Global Environmental Strategies (IGES) , 2012 .

[108]  P. Ciais,et al.  A synthesis of carbon dioxide emissions from fossil-fuel combustion , 2012 .

[109]  Atul K. Jain,et al.  CO2 emissions from land‐use change affected more by nitrogen cycle, than by the choice of land‐cover data , 2013, Global change biology.

[110]  Hongmei Li,et al.  Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI‐Earth system model in different CMIP5 experimental realizations , 2013 .

[111]  Peter Bergamaschi,et al.  Three decades of global methane sources and sinks , 2013 .

[112]  Are Olsen,et al.  Global surface-ocean p CO 2 and sea–air CO 2 flux variability from an observation-driven ocean mixed-layer scheme , 2013 .

[113]  F. Joos,et al.  Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios , 2013 .

[114]  Thomas S. Bianchi,et al.  The changing carbon cycle of the coastal ocean , 2013, Nature.

[115]  R. Houghton,et al.  Bias in the attribution of forest carbon sinks , 2013 .

[116]  Corinne Le Quéré,et al.  Combined constraints on global ocean primary production using observations and models , 2013 .

[117]  P. Ciais,et al.  A theoretical framework for the net land-to-atmosphere CO 2 flux and its implications in the definition of "emissions from land-use change" , 2013 .

[118]  Atul K. Jain,et al.  Carbon dynamics in the Amazonian Basin: Integration of eddy covariance and ecophysiological data with a land surface model , 2013 .

[119]  Corinne Le Quéré,et al.  The challenge to keep global warming below 2 °C , 2013 .

[120]  Glen P. Peters,et al.  A MULTI-REGION INPUT–OUTPUT TABLE BASED ON THE GLOBAL TRADE ANALYSIS PROJECT DATABASE (GTAP-MRIO) , 2013 .

[121]  Michael Schulz,et al.  Information from paleoclimate archives , 2013 .

[122]  Terminology as a key uncertainty in net land use flux estimates , 2013 .

[123]  B. Elberling,et al.  A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region , 2013 .

[124]  M. Torn,et al.  The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4 , 2013 .

[125]  Benjamin Smith,et al.  Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model , 2013 .

[126]  Jacqueline Boutin,et al.  An update to the Surface Ocean CO2 Atlas (SOCAT version 2) , 2013 .

[127]  Yoshiki Yamagata,et al.  Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model , 2013 .

[128]  Philippe Ciais,et al.  Anthropogenic perturbation of the carbon fluxes from land to ocean , 2013 .

[129]  Jean-Marc Molines,et al.  Eddy compensation and controls of the enhanced sea‐to‐air CO2 flux during positive phases of the Southern Annular Mode , 2013 .

[130]  Zong-Liang Yang,et al.  Technical description of version 4.5 of the Community Land Model (CLM) , 2013 .

[131]  T. DeVries The oceanic anthropogenic CO2 sink: Storage, air‐sea fluxes, and transports over the industrial era , 2014 .

[132]  D. Higdon,et al.  A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission , 2014 .

[133]  D. Schimel,et al.  Effect of increasing CO2 on the terrestrial carbon cycle , 2014, Proceedings of the National Academy of Sciences.

[134]  M. Heimann,et al.  Interannual sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme , 2014 .

[135]  Corinne Le Quéré,et al.  Persistent growth of CO2 emissions and implications for reaching climate targets , 2014 .

[136]  R. Houghton,et al.  Terminology as a key uncertainty in net land use and land cover change carbon flux estimates , 2014 .

[137]  J. Fyfe,et al.  Wind-driven changes in the ocean carbon sink , 2014 .

[138]  Ranga B. Myneni,et al.  Chapter 6: Carbon and Other Biogeochemical Cycles , 2014 .

[139]  P. Jones,et al.  Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset , 2014 .

[140]  Thomas Raddatz,et al.  Comparing the influence of net and gross anthropogenic land-use and land-cover changes on the carbon cycle in the MPI-ESM , 2014 .

[141]  P. Landschützer,et al.  Recent variability of the global ocean carbon sink , 2014 .

[142]  E. Hansis,et al.  Relevance of methodological choices for accounting of land use change carbon fluxes , 2015 .

[143]  Joe R. Melton,et al.  Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0 , 2015 .

[144]  Atul K. Jain,et al.  Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change , 2015 .

[145]  A. Barbosa‐Póvoa Supply chain , 2015, 2015 International Conference on Industrial Engineering and Systems Management (IESM).

[146]  Atul K. Jain,et al.  Global Carbon Budget 2015 , 2015 .

[147]  Olivier Aumont,et al.  PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies , 2015 .

[148]  C. Kobayashi,et al.  The JRA-55 Reanalysis: General Specifications and Basic Characteristics , 2015 .

[149]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .