The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two-dimensions

Abstract This paper presents a new cell-centered Lagrangian scheme for two-dimensional compressible flow. The new scheme uses a semi-Lagrangian form of the Euler equations. The system of equations is discretized by discontinuous Galerkin (DG) method using the Taylor basis. The vertex velocities and the numerical fluxes through the cell interfaces are computed consistently by a nodal solver. The mesh moves with the fluid flow. The time marching is implemented by a class of the Runge–Kutta (RK) methods. A WENO reconstruction is used as a limiter for the RKDG method. The scheme is conservative for the mass, momentum and total energy, and obeys the geometrical conservation law. The scheme maintains high-order accuracy and has free parameters. Results of some numerical tests are presented to demonstrate the accuracy and the robustness of the scheme.

[1]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[2]  Wai How Hui,et al.  A unified coordinate system for solving the three-dimensional Euler equations , 1999 .

[3]  ZhuJun,et al.  Runge-Kutta discontinuous Galerkin method using WENO limiters II , 2005 .

[4]  Michael Dumbser,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[5]  François Vilar,et al.  Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics , 2012 .

[6]  Mikhail Shashkov,et al.  A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .

[7]  Rainald Löhner,et al.  A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids , 2008, J. Comput. Phys..

[8]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[9]  Shudao Zhang,et al.  A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions , 2011, J. Comput. Phys..

[10]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[11]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[12]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[13]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[14]  John K. Dukowicz,et al.  Vorticity errors in multidimensional Lagrangian codes , 1992 .

[15]  M. Dumbser,et al.  High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows , 2013, 1304.4816.

[16]  C. Zemach,et al.  CAVEAT: A computer code for fluid dynamics problems with large distortion and internal slip. Revision 1 , 1992 .

[17]  Rémi Abgrall,et al.  Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics , 2011 .

[18]  Jérôme Breil,et al.  A second‐order cell‐centered Lagrangian scheme for two‐dimensional compressible flow problems , 2008 .

[19]  Rémi Abgrall,et al.  A Lagrangian Discontinuous Galerkin‐type method on unstructured meshes to solve hydrodynamics problems , 2004 .

[20]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[21]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[22]  Chi-Wang Shu,et al.  A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..

[23]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[24]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two dimensional case , 2005 .

[25]  Lev Davidovich Landau,et al.  Mécanique des fluides , 1989 .

[26]  Michael Dumbser,et al.  Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes , 2013, 1302.3076.

[27]  Pierre-Henri Maire,et al.  A unified sub‐cell force‐based discretization for cell‐centered Lagrangian hydrodynamics on polygonal grids , 2011 .

[28]  Pierre-Henri Maire,et al.  A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids , 2011 .