Compositional semantics and behavioral equivalences for P Systems

The aim of the paper is to give a compositional semantics in the style of the Structural Operational Semantics (SOS) and to study behavioral equivalence notions for P Systems. Firstly, we consider P Systems with maximal parallelism and without priorities. We define a process algebra, called P Algebra, whose terms model membranes, we equip the algebra with a Labeled Transition System (LTS) obtained through SOS transition rules, and we study how some equivalence notions defined over the LTS model apply in our case. Then, we consider P Systems with priorities and extend the introduced framework to deal with them. We prove that our compositional semantics reflects correctly maximal parallelism and priorities.

[1]  Gabriel Ciobanu,et al.  A rewriting logic framework for operational semantics of membrane systems , 2007, Theor. Comput. Sci..

[2]  Simone Tini,et al.  An axiomatic semantics for Esterel , 2001, Theor. Comput. Sci..

[3]  Nadia Busi,et al.  Using well-structured transition systems to decide divergence for catalytic P systems , 2007, Theor. Comput. Sci..

[4]  Luca Aceto,et al.  Deriving Complete Inference Systems for a Class of GSOS Languages Generation Regular Behaviours , 1994, CONCUR.

[5]  Andrea Maggiolo-Schettini,et al.  A comparison of Statecharts step semantics , 2003, Theor. Comput. Sci..

[6]  Rance Cleaveland,et al.  Statecharts Via Process Algebra , 1999, CONCUR.

[7]  Frits W. Vaandrager,et al.  Turning SOS rules into equations , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[8]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[9]  Jan A. Bergstra,et al.  Process Algebra for Synchronous Communication , 1984, Inf. Control..

[10]  Robert M. Keller,et al.  Formal verification of parallel programs , 1976, CACM.

[11]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[12]  Frits W. Vaandrager,et al.  On the relationship between process algebra and input/output automata , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[13]  Rob J. van Glabbeek Full Abstraction in Structural Operational Semantics (Extended Abstract) , 1993, AMAST.

[14]  Gheorghe Paun,et al.  A guide to membrane computing , 2002, Theor. Comput. Sci..

[15]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[16]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[17]  Gabriel Ciobanu,et al.  Structural Operational Semantics of P Systems , 2005, Workshop on Membrane Computing.

[18]  Rob van Glabbeek Full Abstraction in Structural Operational Semantics , 1993 .

[19]  Nadia Busi,et al.  Causality in Membrane Systems , 2007, Workshop on Membrane Computing.

[20]  Rudolf Freund,et al.  A Formal Framework for Static (Tissue) P Systems , 2007, Workshop on Membrane Computing.

[21]  Robert de Simone,et al.  Higher-Level Synchronising Devices in Meije-SCCS , 1985, Theor. Comput. Sci..

[22]  Scott A. Smolka,et al.  A Compositional Semantics for Statecharts using Labeled Transition Systems , 1994, CONCUR.

[23]  Robin Milner,et al.  A Complete Inference System for a Class of Regular Behaviours , 1984, J. Comput. Syst. Sci..

[24]  Simone Tini,et al.  An axiomatic semantics for the synchronous language Gentzen , 2001, J. Comput. Syst. Sci..