Cast-Replicated NiTiCu Foams with Superelastic Properties

[1]  David C. Dunand,et al.  Mechanical anisotropy of shape-memory NiTi with two-dimensional networks of micro-channels , 2011 .

[2]  D. Dunand,et al.  Niobium Wires as Space Holder and Sintering Aid for Porous NiTi , 2011 .

[3]  D. Dunand,et al.  Shape-memory NiTi with two-dimensional networks of micro-channels. , 2011, Acta biomaterialia.

[4]  Gunther Eggeler,et al.  Improvement of NiTi Shape Memory Actuator Performance Through Ultra‐Fine Grained and Nanocrystalline Microstructures , 2011 .

[5]  Yong S. Chu,et al.  Identification of Quaternary Shape Memory Alloys with Near‐Zero Thermal Hysteresis and Unprecedented Functional Stability , 2010 .

[6]  Gunther Eggeler,et al.  Elementary Transformation and Deformation Processes and the Cyclic Stability of NiTi and NiTiCu Shape Memory Spring Actuators , 2009 .

[7]  D. Dunand,et al.  Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams. , 2009, Nature materials.

[8]  A. Mortensen,et al.  Processing of Ag–Cu alloy foam by the replication process , 2009 .

[9]  D. Dunand,et al.  Shape-memory NiTi–Nb foams , 2009 .

[10]  D. Dunand,et al.  Shape-memory NiTi foams produced by replication of NaCl space-holders. , 2008, Acta biomaterialia.

[11]  D. Stöver,et al.  Powder metallurgical processing of NiTi shape memory alloys with elevated transformation temperatures , 2008 .

[12]  John Banhart,et al.  Porous Metals and Metallic Foams: Current Status and Recent Developments , 2008 .

[13]  D. Dunand,et al.  Ni‐Mo‐Cr Foams Processed by Casting Replication of Sodium Aluminate Preforms , 2008 .

[14]  David C. Dunand,et al.  Shape-memory NiTi foams produced by solid-state replication with NaF , 2007 .

[15]  Elena Villa,et al.  Low-frequency internal friction of hydrogen-free and hydrogen-doped NiTi alloys , 2007 .

[16]  S. Stock,et al.  Uniform and graded chemical milling of aluminum foams , 2007 .

[17]  G. Eggeler,et al.  Influence of Ni on martensitic phase transformations in NiTi shape memory alloys , 2007 .

[18]  L. Salvo,et al.  Replication Processing of Highly Porous Materials , 2006 .

[19]  J. Banhart Metal Foams: Production and Stability , 2006 .

[20]  Abhay Pandit,et al.  Fabrication methods of porous metals for use in orthopaedic applications. , 2006, Biomaterials.

[21]  W. Cai,et al.  Recent development of TiNi-based shape memory alloys , 2005 .

[22]  G. Eggeler,et al.  On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys , 2005 .

[23]  G. Eggeler,et al.  Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires , 2005 .

[24]  D. Dunand,et al.  Processing and structure of open-celled amorphous metal foams , 2005 .

[25]  Klaus Neuking,et al.  High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles , 2004 .

[26]  Neil Morgan,et al.  Medical shape memory alloy applications—the market and its products , 2004 .

[27]  B. Coluzzi,et al.  Mechanical spectroscopy of the H-free and H-doped Ni30Ti50Cu20 shape memory alloy , 2003 .

[28]  K. P. Gupta The Cu-Ni-Ti (Copper-Nickel-Titanium) system , 2002 .

[29]  G. Eggeler,et al.  The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys , 2002 .

[30]  J. Lebrun,et al.  Composition and structure of NiTiCu shape memory thin films , 2000 .

[31]  A. Pelton,et al.  An overview of nitinol medical applications , 1999 .

[32]  Jan Van Humbeeck,et al.  Non-medical applications of shape memory alloys , 1999 .

[33]  J. Roberts,et al.  NiTi and NiTi-TiC composites: Part IV. Neutron diffraction study of twinning and shape-memory recovery , 1996 .

[34]  R. Cahn Binary Alloy Phase Diagrams–Second edition. T. B. Massalski, Editor‐in‐Chief; H. Okamoto, P. R. Subramanian, L. Kacprzak, Editors. ASM International, Materials Park, Ohio, USA. December 1990. xxii, 3589 pp., 3 vol., hard‐ back. $995.00 the set , 1991 .

[35]  O. Mercier,et al.  The substitution of Cu for Ni in NiTi shape memory alloys , 1979 .

[36]  H. Nakajima,et al.  Fabrication of Lotus-type Porous NiTi Shape Memory Alloys using the Continuous Zone Melting Method and Tensile Property , 2007 .

[37]  S. Shabalovskaya,et al.  Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. , 2002, Bio-medical materials and engineering.

[38]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .