Seabird transfer of nutrients and trace elements from the north water polynya to land during the mid-holocene warm period, carey islands, northwest Greenland

On sait aujourd’hui que le guano d’oiseaux marins provenant des grandes colonies nicheuses fait augmenter les teneurs en metaux-traces dans les milieux terrestres adjacents et que tous les oceans sont contamines au Hg, au Cd et autres metaux. Toutefois, l’effet du guano d’oiseaux marins dans la periode preindustrielle a rarement fait l’objet d’etudes. Nous avons utilise des isotopes stables de carbone d’azote et des analyses d’oligoelements d’une carotte de tourbe, qui represente environ 2000 ans d’accumulation de matieres organiques, pour examiner l’effet de la presence d’une colonie d’oiseaux marins qui a existe dans le nord de la baie de Baffin pendant le maximum thermique de l’Holocene (environ 8000 a 5000 ans BP) sur les oligoelements et les nutriments. Meme si les concentrations de C et de N etaient semblables a celles se trouvant dans d’autres tourbes, les donnees isotopiques ont demontre que la principale source de N, et une source mineure de C, provenaient de matieres organiques marines, indiquant ainsi que les oiseaux marins inconnus etaient des especes piscivores qui y ont reside l’ete pendant 2000 ans. Les concentrations de Cd, Br, Sr et Zn dans la tourbe etaient d’un ordre de grandeur superieur a celles des tourbieres ombrotrophes (alimentees par l’air) d’ailleurs, tandis que les concentrations de Hg et de Cu etaient semblables a celles d’autres tourbes, ce qui laisse sous-entendre des niveaux relativement bas de Hg et Cu dans le guano. Ce resultat concernant le Hg est surprenant, car il est contraire aux etudes modernes sur les oiseaux marins demontrant que le guano a considerablement augmente les concentrations de Hg dans l’environnement. Cette augmentation pourrait etre attribuable aux concentrations de Hg dans les reseaux alimentaires marins de l’Arctique lors de la periode preindustrielle, d’un ordre de grandeur inferieur aux concentrations d’aujourd’hui.

[1]  Z. Xie,et al.  Mercury Stable Isotopes in Ornithogenic Deposits As Tracers of Historical Cycling of Mercury in Ross Sea, Antarctica. , 2015, Environmental science & technology.

[2]  Konrad Gajewski,et al.  Quantitative reconstruction of Holocene temperatures across the Canadian Arctic and Greenland , 2015 .

[3]  H. Bocherens,et al.  European Bison as a Refugee Species? Evidence from Isotopic Data on Early Holocene Bison and Other Large Herbivores in Northern Europe , 2015, PloS one.

[4]  R. Macdonald,et al.  Change at the margin of the North Water Polynya, Baffin Bay, inferred from organic matter records in dated sediment cores , 2013 .

[5]  Xiao-dong Liu,et al.  Effect of penguin and seal excrement on mercury distribution in sediments from the Ross Sea region, East Antarctica. , 2012, The Science of the total environment.

[6]  A. Lotter,et al.  Stable Carbon and Nitrogen Isotopes in a Peat Profile Are Influenced by Early Stage Diagenesis and Changes in Atmospheric CO2 and N Deposition , 2012, Water, Air, & Soil Pollution.

[7]  R. Macdonald,et al.  Effects of seabird vectors on the fate, partitioning, and signatures of contaminants in a High Arctic ecosystem. , 2011, Environmental science & technology.

[8]  KristensenE.,et al.  Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C3 plants, faeces, and wool , 2011 .

[9]  A. Sacco,et al.  Evaluating the ‘conservative’ behavior of stable isotopic ratios (δ13C, δ15N, and δ18O) in humic acids and their reliability as paleoenvironmental proxies along a peat sequence , 2011 .

[10]  H. Sanei,et al.  Does organic matter degradation affect the reconstruction of pre-industrial atmospheric mercury deposition rates from peat cores? — A test of the hypothesis using a permafrost peat deposit in northern Canada , 2010 .

[11]  J. Smol,et al.  An isotopic investigation of mercury accumulation in terrestrial food webs adjacent to an Arctic seabird colony. , 2010, The Science of the total environment.

[12]  R. Dietz,et al.  Anthropogenic contributions to mercury levels in present-day Arctic animals--a review. , 2009, The Science of the total environment.

[13]  K. Hobson,et al.  Long-term changes of mercury levels in ringed seal (Phoca hispida) from Amundsen Gulf, and beluga (Delphinapterus leucas) from the Beaufort Sea, western Canadian Arctic. , 2009, The Science of the total environment.

[14]  R. Macdonald,et al.  High arctic ponds receiving biotransported nutrients from a nearby seabird colony are also subject to potentially toxic loadings of arsenic, cadmium, and zinc , 2009, Environmental toxicology and chemistry.

[15]  D. Raynaud,et al.  Holocene thinning of the Greenland ice sheet , 2009, Nature.

[16]  J. Smol,et al.  Bioenrichment of trace elements in a series of ponds near a northern fulmar (Fulmarus glacialis) colony at Cape Vera, Devon Island , 2009 .

[17]  F. Arnaud,et al.  Assessment of peat quality by molecular and bulk geochemical analysis : Application to the Holocene record of the Chautagne marsh (Haute Savoie, France) , 2008 .

[18]  M. Goodsite,et al.  Palaeoecology of Holocene peat deposits from Nordvestø, north-west Greenland , 2008 .

[19]  R. Mason,et al.  Human impacts on open ocean mercury concentrations , 2007 .

[20]  L. Stempniewicz,et al.  Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem—A scenario , 2007 .

[21]  K. Hobson,et al.  Trophic structure and pathways of biogenic carbon flow in the eastern North Water Polynya , 2006 .

[22]  R. Dietz,et al.  Time trends of mercury in feathers of West Greenland birds of prey during 1851-2003. , 2006, Environmental science & technology.

[23]  K. Hobson,et al.  Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). , 2005, The Science of the total environment.

[24]  K. Hobson,et al.  Changes in mercury and cadmium concentrations and the feeding behaviour of beluga (Delphinapterus leucas) near Somerset Island, Canada, during the 20th century. , 2005, The Science of the total environment.

[25]  K. Hobson Tracing Contaminants with δ15N Measurements , 2005, Science.

[26]  E. Steinnes,et al.  Order-of-magnitude increase of Hg in Norwegian peat profiles since the outset of industrial activity in Europe. , 2005, Environmental pollution.

[27]  T. Thompson,et al.  Stable isotope ratios in swale sequences of Lake Superior as indicators of climate and lake level fluctuations during the Late Holocene , 2005 .

[28]  J. Smol,et al.  Arctic Seabirds Transport Marine-Derived Contaminants , 2005, Science.

[29]  G. Le Roux,et al.  Comparison of atmospheric deposition of copper, nickel, cobalt, zinc, and cadmium recorded by Finnish peat cores with monitoring data and emission records. , 2005, Environmental science & technology.

[30]  M. Goodsite,et al.  Atmospheric mercury accumulation rates between 5900 and 800 calibrated years BP in the High Arctic of Canada recorded by peat hummocks. , 2004, Environmental science & technology.

[31]  W. Shotyk,et al.  Millennial-scale records of atmospheric mercury deposition obtained from ombrotrophic and minerotrophic peatlands in the Swiss Jura Mountains. , 2003, Environmental science & technology.

[32]  G. Winckler,et al.  Carbon isotopes and habitat of polar planktic foraminifera in the Okhotsk Sea: the ‘carbonate ion effect’ under natural conditions , 2002 .

[33]  H. Emons,et al.  A peat bog record of natural, pre-anthropogenic enrichments of trace elements in atmospheric aerosols since 12 370 14 C yr BP, and their variation with Holocene climate change , 2002 .

[34]  Steve P. McGrath,et al.  Trends in 13C/12C ratios and C isotope discrimination of wheat since 1845 , 2001, Oecologia.

[35]  Anne de Vernal,et al.  Sea‐surface conditions in northernmost Baffin Bay during the Holocene: palynological evidence , 2001 .

[36]  C. Schubert,et al.  Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments:: implications for nutrient utilization and organic matter composition , 2001 .

[37]  D. Robinson δ15N as an integrator of the nitrogen cycle , 2001 .

[38]  W. Shotyk,et al.  A new approach for quantifying cumulative, anthropogenic, atmospheric lead deposition using peat cores from bogs: Pb in eight Swiss peat bog profiles. , 2000, The Science of the total environment.

[39]  W. Stock,et al.  On the uptake of ornithogenic products by plants on the inland mountains of Dronning Maud Land, Antarctica, using stable isotopes , 1998, Polar Biology.

[40]  P. Koch,et al.  ISOTOPIC RECONSTRUCTION OF PAST CONTINENTAL ENVIRONMENTS , 1998 .

[41]  M. Flint,et al.  Utilization of nitrogen derived from seabird guano by terrestrial and marine plants at St. Paul, Pribilof Islands, Bering Sea, Alaska , 1998 .

[42]  K. Rehfuess,et al.  Pb and Cd Concentrations in a Southern Bavarian Bog Profile and the History of Vegetation as Recorded by Pollen Analysis , 1997 .

[43]  D. Bonjean,et al.  Paleobiological Implications of the Isotopic Signatures (13C,15N) of Fossil Mammal Collagen in Scladina Cave (Sclayn, Belgium) , 1997, Quaternary Research.

[44]  R. D. Evans,et al.  Historical trends of heavy metals and stable lead isotopes in beluga (Delphinapterus leucas) and walrus (Odobenus rosmarus rosmarus) in the Canadian Arctic , 1997 .

[45]  G. Ågren,et al.  Isotope Discrimination during Decomposition of Organic Matter: A Theoretical Analysis , 1996 .

[46]  W. Shotyk,et al.  An Energy-dispersive Miniprobe Multielement Analyzer (EMMA) for direct analysis of Pb and other trace elements in peats , 1996, Analytical and bioanalytical chemistry.

[47]  K. Hobson,et al.  Using stable isotopes to determine seabird trophic relationships , 1994 .

[48]  P. Meyers Preservation of elemental and isotopic source identification of sedimentary organic matter , 1994 .

[49]  B. Godzik Heavy metals and macroelements in the tundra of southern Spitsbergen: the effect of little auk Alle alle (L.) colonies , 1991 .

[50]  S. P. Mathur,et al.  Limited downward migration of pollutant metals (Cu, Zn, Ni, and Pb) in acidic virgin peat soils near a smelter , 1990 .

[51]  E. Wada,et al.  High nitrogen isotope ratio for soils of seabird rookeries , 1986 .

[52]  G. Brassard,et al.  An extensive subfossil deposit of the arctic moss Aplodon wormskioldii , 1978 .

[53]  W. Steere Observations on the Genus Aplodon (Musci: Splachnaceae)' , 1973 .

[54]  M. T. Maldonado,et al.  Biogeochemistry of cadmium and its release to the environment. , 2013, Metal ions in life sciences.

[55]  P. Outridge,et al.  Comparison of mercury and zinc profiles in peat and lake sediment archives with historical changes in emissions from the Flin Flon metal smelter, Manitoba, Canada. , 2011, The Science of the total environment.

[56]  J. L. Burnham,et al.  An ornithological survey of the Carey Islands, Northwest Greenland , 2010 .

[57]  P. Kuhry,et al.  Stable carbon and oxygen isotopes in Sphagnum fuscum peat from subarctic Canada : implications for palaeoclimate studies , 2010 .

[58]  C. Lohse,et al.  Accumulation rates and predominant atmospheric sources of natural and anthropogenic Hg and Pb on the Faroe Islands , 2005 .

[59]  M. Goodsite,et al.  An Improved Motorized Corer and Sample Processing System for Frozen Peat , 2004 .

[60]  Keith A. Hobson,et al.  A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants , 2002 .

[61]  M. Gosselin,et al.  Organic-walled microfossils and geochemical tracers: sedimentary indicators of productivity changes in the North Water and northern Baffin Bay during the last centuries , 2002 .

[62]  G. Wefer,et al.  The imprint of anthropogenic CO2 in the Arctic Ocean: evidence from planktic δ13C data from watercolumn and sediment surfaces , 2000 .

[63]  A. Dyke,et al.  Changes in driftwood delivery to the Canadian Arctic Archipelago: The hypothesis of postglacial oscillations of the transpolar drift , 1997 .

[64]  D. Vitt,et al.  Fossil Carbon/Nitrogen Ratios as a Measure of Peat Decomposition , 1996 .

[65]  Weston BlakeJr. Ratios of stable carbon isotopes in some High Arctic plants and lake sediments , 1991 .

[66]  B. Peterson,et al.  STABLE ISOTOPES IN ECOSYSTEM STUDIES , 1987 .

[67]  C. D. Keeling The Suess effect: 13Carbon-14Carbon interrelations , 1979 .