Low temperature catalytic combustion of o-dichlorobenzene over supported Mn–Ce oxides: effect of support and Mn/Ce ratio

A series of Mn–Ce mixed oxide catalysts supported on cordierite, TiO2 or γ-Al2O3 carriers were tested for their catalytic performance towards hazardous gaseous o-dichlorobenzene combustion. The results indicated that superficial MnOx species vary with carriers such as Mn2O3 on the cordierite, Mn3O4 on the TiO2 and amorphous MnOx on the Al2O3 support. The catalysts supported on cordierite with a 9 : 1 Mn/Ce the ratio presented high catalytic performance in a low temperature range of 150–300 °C, which is due to their better reducibility, well-dispersed manganese oxide and enrichment of available active oxygen species on the catalysts surface.

[1]  Liangjie Fu,et al.  Emerging Parallel Dual 2D Composites: Natural Clay Mineral Hybridizing MoS2 and Interfacial Structure , 2016 .

[2]  Chenghang Zheng,et al.  Post-plasma catalytic removal of methanol over Mn–Ce catalysts in an atmospheric dielectric barrier discharge , 2016 .

[3]  A. Tang,et al.  Three-way catalytic performances of Pd loaded halloysite-Ce0.5Zr0.5O2 hybrid materials , 2016 .

[4]  Wei Deng,et al.  Low temperature catalytic combustion of 1,2-dichlorobenzene over CeO2–TiO2 mixed oxide catalysts , 2016 .

[5]  A. Tang,et al.  Applications and interfaces of halloysite nanocomposites , 2016 .

[6]  A. Tang,et al.  Kaolinite stabilized paraffin composite phase change materials for thermal energy storage , 2015 .

[7]  R. Roy,et al.  Advances in catalytic oxidation of organic pollutants - Prospects for thorough mineralization by natural clay catalysts , 2015 .

[8]  Chenghang Zheng,et al.  Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor , 2015 .

[9]  Qian Yang,et al.  Helical TiO2 Nanotube Arrays Modified by Cu-Cu2O with Ultrahigh Sensitivity for the Nonenzymatic Electro-oxidation of Glucose. , 2015, ACS applied materials & interfaces.

[10]  Liu Yunyun,et al.  明確なPOSS(多面体オリゴマシルセスキオキサン)ナノクラスタ構造からの単層ナノチューブ成長 , 2015 .

[11]  A. Tang,et al.  Electrodeposition of Sb2Se3 on TiO2 nanotube arrays for catalytic reduction of p-nitrophenol , 2014 .

[12]  Aidong Tang,et al.  Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation. , 2014, Biosensors & bioelectronics.

[13]  Shantang Liu,et al.  SnOx–MnOx–TiO2 catalysts with high resistance to chlorine poisoning for low-temperature chlorobenzene oxidation , 2014 .

[14]  B. Su,et al.  Synthesis and applications of hierarchically porous catalysts , 2014 .

[15]  S. Tsybulya,et al.  Effect of heat treatment conditions on the structure and catalytic properties of MnOx/Al2O3 in the reaction of CO oxidation , 2013 .

[16]  L. Liotta,et al.  Supported gold catalysts for the total oxidation of volatile organic compounds , 2012 .

[17]  Hailong Li,et al.  Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures , 2012 .

[18]  Yu Dai,et al.  Effect of Ce and La on the structure and activity of MnOx catalyst in catalytic combustion of chlorobenzene , 2012 .

[19]  M. Gong,et al.  MnOx/Ce0.5+xZr0.4−xLa0.1O1.95-Al2O3 catalysts used for benzene catalytic combustion , 2011 .

[20]  Qiguang Dai,et al.  Low temperature catalytic combustion of chlorobenzene over Mn–Ce–O/γ-Al2O3 mixed oxides catalyst , 2010 .

[21]  Yue Liu,et al.  Low-temperature selective catalytic reduction of NO with NH(3) over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study. , 2010, Chemosphere.

[22]  R. Font,et al.  Formation of polychlorinated compounds in the combustion of PVC with iron nanoparticles. , 2010, Chemosphere.

[23]  Weixin Huang,et al.  A comparative study of formaldehyde and carbon monoxide complete oxidation on MnOx-CeO2 catalysts , 2009 .

[24]  S. Moon,et al.  Catalytic conversion of 1,2-dichlorobenzene using V2O5/TiO2 catalysts by a thermal decomposition process. , 2009, Chemosphere.

[25]  Wang Xing-yi,et al.  Catalytic combustion of chlorobenzene over MnOx–CeO2 mixed oxide catalysts , 2009 .

[26]  I. Wachs,et al.  Selective oxidation of propylene over model supported V2O5 catalysts: Influence of surface vanadia coverage and oxide support , 2008 .

[27]  M. D. Amiridis,et al.  Catalytic oxidation of chlorophenol over V2O5/TiO2 catalysts , 2008 .

[28]  James A. Anderson,et al.  A comparative study of the role of the support on the behaviour of iron based ammonia SCR catalysts , 2007 .

[29]  C. Briois,et al.  Experimental study on the thermal oxidation of 2-chlorophenol in air over the temperature range 450–900 °C , 2006 .

[30]  Jianguo Wang,et al.  MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature , 2006 .

[31]  S. Gryglewicz,et al.  Hydrodechlorination of dichlorobiphenyls over Ni-Mo/Al2O3 catalysts prepared by spray-drying method. , 2006, Chemosphere.

[32]  J. Trawczyński,et al.  Oxidation of ethanol over supported manganese catalysts—effect of the carrier , 2005 .

[33]  Zhaobin Wei,et al.  Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts , 2001 .

[34]  F. Arena,et al.  Structure and redox properties of bulk and supported manganese oxide catalysts , 2001 .

[35]  M. D. Amiridis,et al.  Catalytic oxidation of 1,2-dichlorobenzene over V2O5/TiO2-based catalysts , 1998 .

[36]  S. Järås,et al.  Mixed manganese oxide/platinum catalysts for total oxidation of model gas from wood boilers , 1997 .