Quantum-limited metrology with product states

We study the performance of initial product states of n-body systems in generalized quantum metrology protocols that involve estimating an unknown coupling constant in a nonlinear k-body (kn) Hamiltonian. We obtain the theoretical lower bound on the uncertainty in the estimate of the parameter. For arbitrary initial states, the lower bound scales as 1/nk, and for initial product states, it scales as 1/nk−1/2. We show that the latter scaling can be achieved using simple, separable measurements. We analyze in detail the case of a quadratic Hamiltonian (k=2), implementable with Bose-Einstein condensates. We formulate a simple model, based on the evolution of angular-momentum coherent states, which explains the O(n−3/2) scaling for k=2; the model shows that the entanglement generated by the quadratic Hamiltonian does not play a role in the enhanced sensitivity scaling. We show that phase decoherence does not affect the O(n−3/2) sensitivity scaling for initial product states.

[1]  A. Luis Quantum limits, nonseparable transformations, and nonlinear optics , 2007 .

[2]  Carlton M. Caves,et al.  Qubit metrology and decoherence , 2007, 0705.1002.

[3]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.

[4]  E. Knill,et al.  Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.

[5]  A. Datta,et al.  On decoherence in quantum clock synchronization , 2006, quant-ph/0605013.

[6]  A. Luis,et al.  Breaking the Heisenberg limit with inefficient detectors , 2005 .

[7]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[8]  W. Zurek,et al.  Sub-Planck phase-space structures and Heisenberg-limited measurements (7 pages) , 2005, quant-ph/0508093.

[9]  S. Bartlett,et al.  Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement , 2005, quant-ph/0505112.

[10]  J. Emerson,et al.  Entanglement assisted metrology. , 2004, Physical review letters.

[11]  J. Dunningham,et al.  Sub-shot-noise-limited measurements with Bose-Einstein condensates , 2004 .

[12]  Alfredo Luis,et al.  Nonlinear transformations and the Heisenberg limit , 2004 .

[13]  John K. Stockton,et al.  Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry. , 2003, Physical review letters.

[14]  Wojciech Hubert Zurek,et al.  Sub-Planck structure in phase space and its relevance for quantum decoherence , 2001, Nature.

[15]  John Preskill,et al.  Quantum information and precision measurement , 1999, quant-ph/9904021.

[16]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[17]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[18]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[19]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[20]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[21]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[22]  A. Giordano,et al.  Detection and estimation theory and its applications , 2006 .

[23]  E. Davies,et al.  PROBABILISTIC AND STATISTICAL ASPECTS OF QUANTUM THEORY (North‐Holland Series in Statistics and Probability, 1) , 1984 .