Multi robot collision avoidance in a shared workspace

This paper presents a decentralised human-aware navigation algorithm for shared human–robot work-spaces based on the velocity obstacles paradigm. By extending our previous work on collision avoidance, we are able to include and avoid static and dynamic obstacles, no matter whether they are induced by other robots and humans passing through. Using various cost maps and Monte Carlo sampling with different cost factors accounting for humans and robots, the approach allows human workers to use the same navigation space as robots. It does not rely on any external positioning sensors and shows its feasibility even in densely packed environments.

[1]  Richard Vaughan,et al.  Massively multi-robot simulation in stage , 2008, Swarm Intelligence.

[2]  Dinesh Manocha,et al.  Reciprocal n-Body Collision Avoidance , 2011, ISRR.

[3]  Kai Oliver Arras,et al.  On multi-modal people tracking from mobile platforms in very crowded and dynamic environments , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[5]  Jur P. van den Berg,et al.  Generalized reciprocal collision avoidance , 2015, Int. J. Robotics Res..

[6]  Javier Alonso-Mora,et al.  Multi-robot navigation in formation via sequential convex programming , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[7]  Daan Bloembergen,et al.  A Telepresence-Robot Approach for Efficient Coordination of Swarms , 2016, ALIFE.

[8]  Manuela Veloso,et al.  Safe Multirobot Navigation Within Dynamics Constraints In fast robot soccer games, teams play without any human input, avoiding collisions and obstacles and coordinating action to implement team strategy and tactics. , 2006 .

[9]  Guy Theraulaz,et al.  A Brief History of Stigmergy , 1999, Artificial Life.

[10]  Timothy M. Chan Optimal output-sensitive convex hull algorithms in two and three dimensions , 1996, Discret. Comput. Geom..

[11]  N. LEMMENS,et al.  Stigmergic Landmark Optimization , 2012, Adv. Complex Syst..

[12]  Karl Tuyls,et al.  Collision avoidance under bounded localization uncertainty , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[14]  Dieter Fox,et al.  Adapting the Sample Size in Particle Filters Through KLD-Sampling , 2003, Int. J. Robotics Res..

[15]  Ming C. Lin,et al.  Optimal Reciprocal Collision Avoidance for Multi-Agent Navigation , 2010 .

[16]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[17]  Karl Tuyls,et al.  Multi-robot collision avoidance with localization uncertainty , 2012, AAMAS.

[18]  Paul A. Beardsley,et al.  Optimal Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots , 2010, DARS.

[19]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[20]  Tim Miller,et al.  Anticipatory stigmergic collision avoidance under noise , 2014, GECCO.

[21]  Dinesh Manocha,et al.  The Hybrid Reciprocal Velocity Obstacle , 2011, IEEE Transactions on Robotics.

[22]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[23]  Dinesh Manocha,et al.  ClearPath: highly parallel collision avoidance for multi-agent simulation , 2009, SCA '09.

[24]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[25]  Martin Buss,et al.  Safety assessment of robot trajectories for navigation in uncertain and dynamic environments , 2011, Autonomous Robots.

[26]  David V. Lu Contextualized Robot Navigation , 2014 .

[27]  Rachid Alami,et al.  Human-aware robot navigation: A survey , 2013, Robotics Auton. Syst..

[28]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[29]  Daniel Lyons,et al.  Lazy auctions for multi-robot collision avoidance and motion control under uncertainty , 2011, AAMAS'11.

[30]  Maja J. Mataric,et al.  Multi-robot task allocation: analyzing the complexity and optimality of key architectures , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[31]  Christian Laugier,et al.  Motion Planning in Dynamic Environments , 2007 .

[32]  Edwin Olson,et al.  LCM: Lightweight Communications and Marshalling , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Manuela M. Veloso,et al.  Safe Multirobot Navigation Within Dynamics Constraints , 2006, Proceedings of the IEEE.

[34]  Paul A. Beardsley,et al.  Collision avoidance for aerial vehicles in multi-agent scenarios , 2015, Auton. Robots.

[35]  Antonella Ferrara,et al.  A dynamic obstacle avoidance strategy for a mobile robot based on sliding mode control , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[36]  Dinesh Manocha,et al.  Independent navigation of multiple mobile robots with hybrid reciprocal velocity obstacles , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Bernard Chazelle,et al.  On the convex layers of a planar set , 1985, IEEE Trans. Inf. Theory.

[38]  Christian Laugier,et al.  Navigating between people: A stochastic optimization approach , 2012, 2012 IEEE International Conference on Robotics and Automation.