Autonomous real-time landing site selection for Venus and Titan using Evolutionary Fuzzy Cognitive Maps

Future science-driven landing missions, conceived to collect in situ data on regions of planetary bodies that have the highest potential to yield important scientific discoveries, will require a higher degree of autonomy. The latter includes the ability of the spacecraft to autonomously select the landing site using real-time data acquired during the descent phase. This paper presents the development of an Evolutionary Fuzzy Cognitive Map (E-FCM) model that implements an artificial intelligence system capable of autonomously selecting a landing site with the highest potential for scientific discoveries constrained by the requirement of soft landing in a region with safe terrains. The proposed E-FCM evolves its internal states and interconnections as a function of real-time data collected during the descent phase, therefore improving the decision process as more accurate information becomes available. The E-FCM is constructed using knowledge accumulated by planetary experts and it is tested on scenarios that simulate the decision process during the descent phase toward the Hyndla Regio on Venus. The E-FCM is shown to quickly reach conclusions that are consistent with what would be the choice of a planetary expert if the scientist were presented with the same information. The proposed methodology is fast and efficient and may be suitable for on-board spacecraft implementation and real-time decision making during the course of robotic exploration of the Solar System.

[1]  J. Lunine,et al.  Rivers, Lakes, Dunes, and Rain: Crustal Processes in Titan's Methane Cycle , 2009 .

[2]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[3]  J. Kasting,et al.  Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. , 1988, Icarus.

[4]  T. Ross Fuzzy Logic with Engineering Applications , 1994 .

[5]  Catherine M. Weitz,et al.  Geology of the Venera 8 landing site region from Magellan data: Morphological and geochemical considerations , 1992 .

[6]  Ralph D. Lorenz,et al.  Tidal Dissipation on Titan , 1995 .

[7]  Chunyan Miao,et al.  Context modeling with Evolutionary Fuzzy Cognitive Map in interactive storytelling , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[8]  Martin T. Hagan,et al.  Neural network design , 1995 .

[9]  R. Mitcheltree,et al.  Mars Science Laboratory entry, descent, and landing system , 2006, 2006 IEEE Aerospace Conference.

[10]  B. Jai,et al.  The Mars reconnaissance orbiter mission , 2005, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[11]  Chrysostomos D. Stylios,et al.  An integrated two-level hierarchical system for decision making in radiation therapy based on fuzzy cognitive maps , 2003, IEEE Transactions on Biomedical Engineering.

[12]  B. Goldstein,et al.  Phoenix - The First Mars Scout Mission , 2005, 2008 IEEE Aerospace Conference.

[13]  Randolph L. Kirk,et al.  Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith , 2008 .

[14]  Giovanni B. Valsecchi,et al.  Source regions and timescales for the delivery of water to the Earth , 2000 .

[15]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[16]  Jeffrey S. Kargel,et al.  Identification of cryovolcanism on Titan using fuzzy cognitive maps , 2010 .

[17]  James W. Head,et al.  Landing on Venus: Past and future , 2007 .

[18]  Marvin Minsky,et al.  Logical Versus Analogical or Symbolic Versus Connectionist or Neat Versus Scruffy , 1991, AI Mag..

[19]  Panagiota Spyridonos,et al.  Advanced soft computing diagnosis method for tumour grading , 2006, Artif. Intell. Medicine.

[20]  Chunyan Miao,et al.  Creating an Immersive Game World with Evolutionary Fuzzy Cognitive Maps , 2010, IEEE Computer Graphics and Applications.

[21]  Sam Kean Exploration. Making smarter, savvier robots. , 2010, Science.

[22]  Jeffrey S. Kargel,et al.  Intelligent systems for the autonomous exploration of Titan and Enceladus , 2008, SPIE Defense + Commercial Sensing.

[23]  R. Mitcheltree,et al.  Mars Science Laboratory entry, descent and landing system verification and validation program , 2006, 2006 IEEE Aerospace Conference.

[24]  Wolfgang Fink Generic Prioritization Framework for Target Selection and Instrument Usage for Reconnaissance Mission Autonomy , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[25]  Roberto Furfaro,et al.  Wind-based navigation of a hot-air balloon on Titan: a feasibility study , 2008, SPIE Defense + Commercial Sensing.

[26]  W. Fink,et al.  Robotic lake lander test bed for autonomous surface and subsurface exploration of Titan lakes , 2012, 2012 IEEE Aerospace Conference.

[27]  E. H. Mamdani,et al.  Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis , 1976, IEEE Transactions on Computers.

[28]  Randolph L. Kirk,et al.  Fluvial channels on Titan: Initial Cassini RADAR observations , 2008 .

[29]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[30]  David E. Smith,et al.  The Mars Observer laser altimeter investigation , 1992 .

[31]  R. Kirk,et al.  Cassini Radar Views the Surface of Titan , 2005, Science.

[32]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[33]  Roberto Furfaro,et al.  Robotic test bed for autonomous surface exploration of Titan, Mars, and other planetary bodies , 2011, 2011 Aerospace Conference.

[35]  Elpiniki I. Papageorgiou,et al.  A new methodology for Decisions in Medical Informatics using fuzzy cognitive maps based on fuzzy rule-extraction techniques , 2011, Appl. Soft Comput..

[36]  Raymond E. Arvidson,et al.  2001 Mars Odyssey Mission Summary , 2004 .

[37]  Raymond E. Arvidson,et al.  Phoenix Landing Site Hazard Assessment and Selection , 2009 .

[38]  A. J. Palmero-Rodriguez,et al.  The search for life beyond Earth through fuzzy expert systems , 2008 .

[39]  J. Lunine,et al.  Ethane Ocean on Titan , 1983, Science.

[40]  Chrysostomos D. Stylios,et al.  Active Hebbian learning algorithm to train fuzzy cognitive maps , 2004, Int. J. Approx. Reason..

[41]  Voula C. Georgopoulos,et al.  Fuzzy cognitive map architectures for medical decision support systems , 2008, Appl. Soft Comput..

[42]  Jeffrey S. Kargel,et al.  The Volcanology of Venera and VEGA Landing Sites and the Geochemistry of Venus , 1993 .

[43]  Panagiota Spyridonos,et al.  Brain tumor characterization using the soft computing technique of fuzzy cognitive maps , 2008, Appl. Soft Comput..

[44]  Trent M. Hare,et al.  Next-generation robotic planetary reconnaissance missions: A paradigm shift , 2005 .

[45]  Gerard P. Kuiper,et al.  Titan: a Satellite with an Atmosphere. , 1944 .

[46]  L. A. Zedeh Knowledge representation in fuzzy logic , 1989 .

[47]  Jean-Pierre Lebreton,et al.  An overview of the descent and landing of the Huygens probe on Titan , 2005, Nature.

[48]  Bart Kosko,et al.  Fuzzy Cognitive Maps , 1986, Int. J. Man Mach. Stud..

[49]  A. Knowledge Representation in Fuzzy Logic , .

[50]  Rosaly M. C. Lopes,et al.  The Sand Seas of Titan: Cassini RADAR Observations of Longitudinal Dunes , 2006, Science.

[51]  Roberto Furfaro,et al.  Fuzzy logic expert system for tier-scalable planetary reconnaissance , 2006 .

[52]  Norman H. Sleep,et al.  Evolution of the mode of convection within terrestrial planets , 2000 .