Conjunctive prediction of an ordinal criterion variable on the basis of binary predictors

In this paper we propose an empirical prediction method to retrieve, for a given ordinal criterion and a set of binary predictors, a series of nested sets of predictors, each set containing all singly necessary (and, if feasible, jointly sufficient) predictors for a particular criterion value. The method extends a previously developed approach to construct approximate Galois lattice models of binary data. After sketching an outline of the new model and associated algorithm we illustrate our method with an application to real psychological data on the experience of anger.

[1]  Alain Guénoche,et al.  Galois approach to the induction of concepts , 1993 .

[2]  Iven Van Mechelen,et al.  The conjunctive model of hierarchical classes , 1995 .

[3]  Anna Wierzbicka,et al.  Defining Emotion Concepts , 1992, Cogn. Sci..

[4]  G. S. Lbov 21 Logical functions in the problems of empirical prediction , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[5]  Ki Hang Kim Boolean matrix theory and applications , 1982 .

[6]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[7]  I. Van Mechelen Approximate Galois Lattices of Formal Concepts , 1993 .

[8]  F. Restle Psychology of judgment and choice , 1961 .

[9]  P. Lazarsfeld,et al.  Mathematical Thinking in the Social Sciences. , 1955 .

[10]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[11]  G. De Soete,et al.  Clustering and Classification , 2019, Data-Driven Science and Engineering.

[12]  Iven Van Mechelen,et al.  An Evaluation of Two Algorithms for Hierarchical Classes Analysis , 2001, J. Classif..

[13]  Michael P. Windham,et al.  Information and classification: Concepts, methods and applications , 1995 .

[14]  A. Tversky,et al.  Representations of qualitative and quantitative dimensions. , 1982, Journal of experimental psychology. Human perception and performance.

[15]  S. S. Stevens On the psychophysical law. , 1957, Psychological review.

[16]  Malay K. Sen Minimization of Boolean functions of any number of variables using decimal labels , 1983, Inf. Sci..

[17]  Ryszard S. Michalski,et al.  Categories and Concepts: Theoretical Views and Inductive Data Analysis , 1993 .

[18]  Phipps Arabie,et al.  Combinatorial Data Analysis: Optimization by Dynamic Programming , 1987 .

[19]  Charles C. Ragin,et al.  Assessing Discrimination: A Boolean Approach. , 1984 .

[20]  Peter Burmeister ConImp - Ein Programm zur Formalen Begriffsanalyse , 2000 .

[21]  Michael J. Brusco,et al.  Combinatorial Data Analysis: Optimization by Dynamic Programming, by L. Hubert, P. Arabie, and J. Meulman , 2001, J. Classif..

[22]  Iven Van Mechelen,et al.  A Branch-and-bound Algorithm for Boolean Regression , 1998 .

[23]  Peter Kuppens,et al.  The appraisal basis of anger: specificity, necessity and sufficiency of components. , 2003, Emotion.

[24]  A. K. Halder Grouping table for the minimisation of n-variable boolean functions , 1978 .

[25]  B. Stöhr,et al.  Formal Concept Analysis of Data With Tolerances , 1992 .

[26]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[27]  Iven Van Mechelen,et al.  Bayesian probabilistic extensions of a deterministic classification model , 2000, Comput. Stat..

[28]  Gerd Stumme,et al.  Begriffliche Wissensverarbeitung: Methoden und Anwendungen , 2000 .

[29]  Vincent Duquenne The core of finite lattices , 1991, Discret. Math..

[30]  Phipps Arabie,et al.  AN OVERVIEW OF COMBINATORIAL DATA ANALYSIS , 1996 .