The Critical Exponent is Computable for Automatic Sequences
暂无分享,去创建一个
[1] Alan Cobham,et al. Uniform tag sequences , 1972, Mathematical systems theory.
[2] Jeffrey Shallit,et al. Enumeration and Decidable Properties of Automatic Sequences , 2011, Int. J. Found. Comput. Sci..
[3] Dalia Krieger,et al. Critical Exponents and Stabilizers of Infinite Words , 2008 .
[4] James D. Currie,et al. For each α > 2 there is an Infinite Binary Word with Critical Exponent α , 2008, Electron. J. Comb..
[5] Jeffrey Shallit,et al. Periodicity, repetitions, and orbits of an automatic sequence , 2008, Theor. Comput. Sci..
[6] J. Cassaigne,et al. Diophantine properties of real numbers generated by finite automata , 2006, Compositio Mathematica.
[7] Jean-Paul Allouche,et al. Facteurs des suites de Rudin-Shapiro généralisées , 1994 .
[8] Filippo Mignosi,et al. Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..
[9] Y. Bugeaud,et al. Dynamics for β-shifts and Diophantine approximation , 2007, Ergodic Theory and Dynamical Systems.
[10] Alan Cobham,et al. On the base-dependence of sets of numbers recognizable by finite automata , 1969, Mathematical systems theory.
[11] Gheorghe Paun,et al. Thin and Slender Languages , 1995, Discret. Appl. Math..
[12] Dalia Krieger. On critical exponents in fixed points of non-erasing morphisms , 2007, Theor. Comput. Sci..
[13] Jeffrey Shallit,et al. Automatic Sequences: Theory, Applications, Generalizations , 2003 .
[14] Valérie Berthé,et al. Initial powers of Sturmian sequences , 2006 .
[15] Jeffrey Shallit,et al. Every real number greater than 1 is a critical exponent , 2007, Theor. Comput. Sci..
[16] Jeffrey Shallit,et al. Morphic and Automatic Words: Maximal Blocks and Diophantine Approximation , 2008, ArXiv.
[17] Huei-Jan Shyr,et al. H-Bounded and Semi-discrete Languages , 1981, Inf. Control..
[18] Jeffrey Shallit,et al. Numeration Systems, Linear Recurrences, and Regular Sets , 1994, Inf. Comput..
[19] B. Adamczewski. On the expansion of some exponential periods in an integer base , 2012, 1205.0961.