The Critical Exponent is Computable for Automatic Sequences

The critical exponent of an infinite word is defined to be the supremum of the exponent of each of its factors. For k-automatic sequences, we show that this critical exponent is always either a rational number or infinite, and its value is computable. Our results also apply to variants of the critical exponent, such as the initial critical exponent of Berthe, Holton, and Zamboni and the Diophantine exponent of Adamczewski and Bugeaud. Our work generalizes or recovers previous results of Krieger and others, and is applicable to other situations; e.g., the computation of the optimal recurrence constant for a linearly recurrent k-automatic sequence.

[1]  Alan Cobham,et al.  Uniform tag sequences , 1972, Mathematical systems theory.

[2]  Jeffrey Shallit,et al.  Enumeration and Decidable Properties of Automatic Sequences , 2011, Int. J. Found. Comput. Sci..

[3]  Dalia Krieger,et al.  Critical Exponents and Stabilizers of Infinite Words , 2008 .

[4]  James D. Currie,et al.  For each α > 2 there is an Infinite Binary Word with Critical Exponent α , 2008, Electron. J. Comb..

[5]  Jeffrey Shallit,et al.  Periodicity, repetitions, and orbits of an automatic sequence , 2008, Theor. Comput. Sci..

[6]  J. Cassaigne,et al.  Diophantine properties of real numbers generated by finite automata , 2006, Compositio Mathematica.

[7]  Jean-Paul Allouche,et al.  Facteurs des suites de Rudin-Shapiro généralisées , 1994 .

[8]  Filippo Mignosi,et al.  Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..

[9]  Y. Bugeaud,et al.  Dynamics for β-shifts and Diophantine approximation , 2007, Ergodic Theory and Dynamical Systems.

[10]  Alan Cobham,et al.  On the base-dependence of sets of numbers recognizable by finite automata , 1969, Mathematical systems theory.

[11]  Gheorghe Paun,et al.  Thin and Slender Languages , 1995, Discret. Appl. Math..

[12]  Dalia Krieger On critical exponents in fixed points of non-erasing morphisms , 2007, Theor. Comput. Sci..

[13]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[14]  Valérie Berthé,et al.  Initial powers of Sturmian sequences , 2006 .

[15]  Jeffrey Shallit,et al.  Every real number greater than 1 is a critical exponent , 2007, Theor. Comput. Sci..

[16]  Jeffrey Shallit,et al.  Morphic and Automatic Words: Maximal Blocks and Diophantine Approximation , 2008, ArXiv.

[17]  Huei-Jan Shyr,et al.  H-Bounded and Semi-discrete Languages , 1981, Inf. Control..

[18]  Jeffrey Shallit,et al.  Numeration Systems, Linear Recurrences, and Regular Sets , 1994, Inf. Comput..

[19]  B. Adamczewski On the expansion of some exponential periods in an integer base , 2012, 1205.0961.