On Stochastic Reduction in Laser-Assisted Dielectric Breakdown for Programmable Nanopore Fabrication.

The controlled dielectric breakdown emerged as a promising alternative toward accessible solid-state nanopore fabrication. Several prior studies have shown that laser-assisted dielectric breakdown could help control the nanopore position and reduce the possibility of forming multiple pores. Here, we developed a physical model to estimate the probability of forming a single nanopore under different combinations of the laser power and the electric field. This model relies on the material- and experiment-specific parameters: the Weibull statistical parameters and the laser-induced photothermal etching rate. Both the model and our experimental data suggest that a combination of a high laser power and a low electric field is statistically favorable for forming a single nanopore at a programmed location. While this model relies on experiment-specific parameters, we anticipate it could provide the experimental insights for nanopore fabrication by the laser-assisted dielectric breakdown method, enabling broader access to solid-state nanopores and their sensing applications.

[1]  Zifan Tang,et al.  Direct Observation of Redox-Induced Bubble Generation and Nanopore Formation Dynamics in Controlled Dielectric Breakdown , 2020 .

[2]  Zifan Tang,et al.  Confocal scanning photoluminescence for mapping electron and photon beam-induced microscopic changes in SiNx during nanopore fabrication , 2020, Nanotechnology.

[3]  W. Guan,et al.  Sequence-Specific Recognition of HIV-1 DNA with Solid-State CRISPR-Cas12a-Assisted Nanopores (SCAN). , 2020, ACS sensors.

[4]  Zifan Tang,et al.  Noise in nanopore sensors: Sources, models, reduction, and benchmarking , 2020 .

[5]  Simon King,et al.  Solid-state nanopore fabrication by automated controlled breakdown , 2019, Nature Protocols.

[6]  Zifan Tang,et al.  Loop-Mediated Isothermal Amplification-Coupled Glass Nanopore Counting Toward Sensitive and Specific Nucleic Acid Testing. , 2019, Nano letters.

[7]  K. Takeda,et al.  Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules , 2019, Scientific Reports.

[8]  A. Meller,et al.  Automated, Ultra‐Fast Laser‐Drilling of Nanometer Scale Pores and Nanopore Arrays in Aqueous Solutions , 2019, Advanced Functional Materials.

[9]  P. Grutter,et al.  Nanopore Formation via Tip‐Controlled Local Breakdown Using an Atomic Force Microscope , 2019, Small Methods.

[10]  Zifan Tang,et al.  High fidelity moving Z-score based controlled breakdown fabrication of solid-state nanopore , 2019, Nanotechnology.

[11]  Qing Zhao,et al.  Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores. , 2018, ACS nano.

[12]  M. Mayer,et al.  Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown. , 2018, ACS nano.

[13]  Tal Gilboa,et al.  Optically-Monitored Nanopore Fabrication Using a Focused Laser Beam , 2018, Scientific Reports.

[14]  Guangyuan Li,et al.  Sub-20 nm Nanopores Sculptured by a Single Nanosecond Laser Pulse. , 2018, 1806.08172.

[15]  Jianguo Tian,et al.  Fabrication of multiple nanopores in a SiNx membrane via controlled breakdown , 2018, Scientific Reports.

[16]  T. Deng,et al.  Nanopore fabricated in pyramidal HfO2 film by dielectric breakdown method , 2017 .

[17]  David Rodriguez-Larrea,et al.  Label-Free, Multiplexed, Single-Molecule Analysis of Protein-DNA Complexes with Nanopores. , 2017, ACS nano.

[18]  Christopher E Arcadia,et al.  In Situ Nanopore Fabrication and Single-Molecule Sensing with Microscale Liquid Contacts. , 2017, ACS nano.

[19]  Kyle Briggs,et al.  Solid-state nanopore localization by controlled breakdown of selectively thinned membranes , 2017, Nanotechnology.

[20]  Aleksei Aksimentiev,et al.  Graphene Nanopores for Protein Sequencing , 2016, Advanced functional materials.

[21]  B. Cooperman,et al.  Electrophoretic Deformation of Individual Transfer RNA Molecules Reveals Their Identity. , 2016, Nano letters.

[22]  Aleksei Aksimentiev,et al.  Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA , 2015, ACS nano.

[23]  Cees Dekker,et al.  Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown. , 2015, Nano letters.

[24]  Sanmeet S. Chahal,et al.  Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution , 2015, Nanotechnology.

[25]  S. Maier,et al.  Precise attoliter temperature control of nanopore sensors using a nanoplasmonic bullseye. , 2015, Nano letters.

[26]  A. Meller,et al.  Two Color DNA Barcode Detection in Photoluminescence Suppressed Silicon Nitride Nanopores , 2014, Nano letters.

[27]  C. Dekker,et al.  DNA Translocations through Solid-State Plasmonic Nanopores , 2014, Nano letters.

[28]  Rena Akahori,et al.  Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection , 2014, Scientific Reports.

[29]  Kyle Briggs,et al.  Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis. , 2014, Small.

[30]  M. J. Kim,et al.  High precision fabrication and positioning of nanoelectrodes in a nanopore. , 2014, ACS nano.

[31]  Theodore D. Moustakas,et al.  Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores , 2013, Nature nanotechnology.

[32]  Peiming Zhang,et al.  Slowing DNA translocation through a nanopore using a functionalized electrode. , 2013, ACS nano.

[33]  K. Briggs,et al.  Nanopore Fabrication by Controlled Dielectric Breakdown , 2013, PloS one.

[34]  S. Maier,et al.  Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores. , 2013, Nano letters.

[35]  C. Dekker,et al.  Plasmonic nanopore for electrical profiling of optical intensity landscapes. , 2013, Nano letters.

[36]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[37]  Cees Dekker,et al.  Distinguishing single- and double-stranded nucleic acid molecules using solid-state nanopores. , 2009, Nano letters.

[38]  Meni Wanunu,et al.  DNA translocation governed by interactions with solid-state nanopores. , 2008, Biophysical journal.

[39]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[40]  Yvonne E. Watson,et al.  Fabrication of nanopore array electrodes by focused ion beam milling. , 2007, Analytical chemistry.

[41]  Mark Akeson,et al.  Single-molecule analysis of DNA-protein complexes using nanopores , 2007, Nature Methods.

[42]  J. Stathis,et al.  Dielectric breakdown mechanisms in gate oxides , 2005 .

[43]  Marc Gershow,et al.  Detecting single stranded DNA with a solid state nanopore. , 2005, Nano letters.

[44]  J. Joanny,et al.  Fast DNA translocation through a solid-state nanopore. , 2004, Nano letters.

[45]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[46]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[47]  Hiroshi Koyama,et al.  Mechanism of time-dependent oxide breakdown in thin thermally grown SiO2 films , 1999 .

[48]  S. Logan,et al.  The Origin and Status of the Arrhenius Equation , 1982 .

[49]  Sheereen Majd,et al.  Controlling protein translocation through nanopores with bio-inspired fluid walls , 2011 .