Types, Sets, and Categories

This essay is an attempt to sketch the evolution of type theory from its beginnings early in the last century to the present day. Central to the development of the type concept has been its close relationship with set theory to begin with and later its even more intimate relationship with category theory. Since it is effectively impossible to describe these relationships (especially in regard to the latter) with any pretensions to completeness within the space of a comparatively short article, I have elected to offer detailed technical presentations of just a few important instances.

[1]  R. Seely,et al.  Locally cartesian closed categories and type theory , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  John L. Bell,et al.  Toposes and local set theories - an introduction , 1988 .

[3]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[4]  J. Lambek,et al.  Intuitionist type theory and the free topos , 1980 .

[5]  A. Tarski,et al.  Sur les ensembles définissables de nombres réels , 1931 .

[6]  F. Ramsey The foundations of mathematics , 1932 .

[7]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[8]  R. Carnap,et al.  Abriss der Logistik: Mit Besonderer Berücksichtigung der Relationstheorie und Ihrer Anwendungen , 1929 .

[9]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[10]  R. Diaconescu Axiom of choice and complementation , 1975 .

[11]  Alexandre Miquel,et al.  A Strongly Normalising Curry-Howard Correspondence for IZF Set Theory , 2003, CSL.

[12]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[13]  J. Lambek Functional completeness of cartesian categories , 1974 .

[14]  William M. Farmer,et al.  The seven virtues of simple type theory , 2008, J. Appl. Log..

[15]  D. Scott,et al.  Applications of sheaves , 1979 .

[16]  B. Russell Mathematical Logic as Based on the Theory of Types , 1908 .

[17]  P. Martin-Löf An Intuitionistic Theory of Types: Predicative Part , 1975 .

[18]  J. Lambek From types to sets , 1980 .

[19]  Philip J. Scott,et al.  Intuitionist type theory and foundations , 1981, J. Philos. Log..

[20]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[21]  L. Chwistek The theory of constructive types , .

[22]  E. Bishop Foundations of Constructive Analysis , 2012 .

[23]  George Boolos Constructing Cantorian counterexamples , 1997, J. Philos. Log..

[24]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[25]  P. Aczel The Type Theoretic Interpretation of Constructive Set Theory: Choice Principles , 1982 .

[26]  R. Gandy The Simple Theory of Types , 1977 .

[27]  Bart Jacobs,et al.  Categorical Logic and Type Theory , 2001, Studies in logic and the foundations of mathematics.

[28]  G. Stolzenberg,et al.  Review: Errett Bishop, Foundations of constructive analysis , 1970 .

[29]  R. A. G. Seely,et al.  Categorical semantics for higher order polymorphic lambda calculus , 1987, Journal of Symbolic Logic.

[30]  Patrick Suppes,et al.  Logic, Methodology and Philosophy of Science , 1963 .

[31]  Peter Aczel,et al.  Collection Principles in Dependent Type Theory , 2000, TYPES.

[32]  S. Maclane,et al.  General theory of natural equivalences , 1945 .

[33]  André Joyal,et al.  La logique des topos , 1981, Journal of Symbolic Logic.

[34]  Silvio Valentini,et al.  Can You Add Power‐Sets to Martin‐Lof's Intuitionistic Set Theory? , 1999, Math. Log. Q..

[35]  J. Myhill,et al.  Choice Implies Excluded Middle , 1978, Math. Log. Q..

[36]  Roy L. Crole,et al.  Categories for Types , 1994, Cambridge mathematical textbooks.

[37]  L. Henkin A theory of prepositional types , 1963 .

[38]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[39]  V. K. Zakharov Local set theory , 2005 .

[40]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[41]  J. Paris,et al.  The Type Theoretic Interpretation of Constructive Set Theory , 1978 .

[42]  P. Johnstone,et al.  REVIEWS-Sketches of an elephant: A topos theory compendium , 2003 .

[43]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[44]  P. T. Johnstone TOPOSES AND LOCAL SET THEORIES: AN INTRODUCTION (Oxford Logic Guides 14) , 1990 .

[45]  P. Martin-Lof,et al.  Constructive mathematics and computer programming , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[46]  J. Ferreirós From Frege to Gödel. A Source Book in Mathematical Logic, 1879¿1931: By Jean van Heijenoort. Cambridge, MA (Harvard University Press). 1967; new paperback edn., 2002. 664 pages, 1 halftone. ISBN: 0-674-32449-8. $27.95 , 2004 .

[47]  R. H.,et al.  The Principles of Mathematics , 1903, Nature.

[48]  F. W. Lawvere QUANTIFIERS AND SHEAVES by , 2010 .

[49]  李幼升,et al.  Ph , 1989 .

[50]  Bengt Nordström,et al.  Programming in Martin-Löf's Type Theory , 1990 .

[51]  M. Fourman The Logic of Topoi , 1977 .

[52]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[53]  Maria Emilia Maietti,et al.  Modular correspondence between dependent type theories and categories including pretopoi and topoi , 2005, Mathematical Structures in Computer Science.

[54]  Peter Aczel,et al.  The Type Theoretic Interpretation of Constructive Set Theory: Inductive Definitions , 1986 .