Efficient implementation of essentially non-oscillatory shock-capturing schemes,II

[1]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[2]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[3]  Ami Harten,et al.  Preliminary results on the extension of eno schemes to two-dimensional problems , 1987 .

[4]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[5]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[6]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[7]  D. M. Bushnell,et al.  Numerical computations of turbulence amplification in shock wave interactions , 1984 .

[8]  David H. Wagner The Riemann Problem in Two Space Dimensions for a Single Conservation Law , 1983 .

[9]  Thomas A. Zang,et al.  Pseudospectral calculation of shock turbulence interactions , 1983 .

[10]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[11]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[12]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[13]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[14]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[15]  J. F. Mckenzie,et al.  Interaction of Linear Waves with Oblique Shock Waves , 1968 .

[16]  P. Lax,et al.  Systems of conservation laws , 1960 .