Dependability‐based cluster weighting in clustering ensemble

[1]  Jun Cao,et al.  A novel image segmentation approach for wood plate surface defect classification through convex optimization , 2017, Journal of Forestry Research.

[2]  Alain Guénoche,et al.  Consensus of partitions : a constructive approach , 2011, Adv. Data Anal. Classif..

[3]  Tsaipei Wang,et al.  CA-Tree: A Hierarchical Structure for Efficient and Scalable Coassociation-Based Cluster Ensembles , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  Vikas Singh,et al.  Ensemble clustering using semidefinite programming with applications , 2010, Machine Learning.

[5]  Zhiwen Yu,et al.  Adaptive Noise Immune Cluster Ensemble Using Affinity Propagation , 2015, IEEE Transactions on Knowledge and Data Engineering.

[6]  Hamid Parvin,et al.  Imputing missing value through ensemble concept based on statistical measures , 2018, Knowledge and Information Systems.

[7]  Chang-Dong Wang,et al.  Combining multiple clusterings via crowd agreement estimation and multi-granularity link analysis , 2014, Neurocomputing.

[8]  William F. Punch,et al.  Data weighing mechanisms for clustering ensembles , 2013, Comput. Electr. Eng..

[9]  Hamid Parvin,et al.  Clustering ensemble selection considering quality and diversity , 2015, Artificial Intelligence Review.

[10]  Joachim M. Buhmann,et al.  Path-Based Clustering for Grouping of Smooth Curves and Texture Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Ioannis T. Christou,et al.  Coordination of Cluster Ensembles via Exact Methods , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  William F. Punch,et al.  Ensembles of partitions via data resampling , 2004, International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004..

[13]  Yunjun Gao,et al.  Hybrid clustering solution selection strategy , 2014, Pattern Recognit..

[14]  Jingsheng Lei,et al.  A clustering ensemble: Two-level-refined co-association matrix with path-based transformation , 2015, Pattern Recognit..

[15]  Hamid Parvin,et al.  Consensus Function Based on Clusters Clustering and Iterative Fusion of Base Clusters , 2019, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[16]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[17]  Hamid Parvin,et al.  Dynamic protein–protein interaction networks construction using firefly algorithm , 2017, Pattern Analysis and Applications.

[18]  Chris H. Q. Ding,et al.  Weighted Consensus Clustering , 2008, SDM.

[19]  Hamid Parvin,et al.  A clustering ensemble framework based on selection of fuzzy weighted clusters in a locally adaptive clustering algorithm , 2013, Pattern Analysis and Applications.

[20]  Sandrine Dudoit,et al.  Bagging to Improve the Accuracy of A Clustering Procedure , 2003, Bioinform..

[21]  Hamid Parvin,et al.  Diverse classifier ensemble creation based on heuristic dataset modification , 2018 .

[22]  Ana L. N. Fred,et al.  Combining multiple clusterings using evidence accumulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Majid Ahmadi,et al.  A new method for hierarchical clustering combination , 2008, Intell. Data Anal..

[24]  Xiaoyi Jiang,et al.  Ensemble clustering by means of clustering embedding in vector spaces , 2014, Pattern Recognit..

[25]  Hamid Parvin,et al.  Using sub-sampling and ensemble clustering techniques to improve performance of imbalanced classification , 2018, Neurocomputing.

[26]  Peter Surový,et al.  Unmanned aerial vehicles (UAV) for assessment of qualitative classification of Norway spruce in temperate forest stands , 2018, Geo spatial Inf. Sci..

[27]  Hamid Parvin,et al.  A comprehensive study of clustering ensemble weighting based on cluster quality and diversity , 2017, Pattern Analysis and Applications.

[28]  ZhongCaiming,et al.  A clustering ensemble , 2015 .

[29]  Tossapon Boongoen,et al.  Refining Pairwise Similarity Matrix for Cluster Ensemble Problem with Cluster Relations , 2008, Discovery Science.

[30]  Muhammad Yousefnezhad,et al.  Wisdom of Crowds cluster ensemble , 2016, Intell. Data Anal..

[31]  Hamid Parvin,et al.  A new natural-inspired continuous optimization approach , 2018, J. Intell. Fuzzy Syst..

[32]  Tossapon Boongoen,et al.  A Link-Based Approach to the Cluster Ensemble Problem , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[34]  Pedro Larrañaga,et al.  An empirical comparison of four initialization methods for the K-Means algorithm , 1999, Pattern Recognit. Lett..

[35]  Hamid Parvin,et al.  A new classifier ensemble methodology based on subspace learning , 2013, J. Exp. Theor. Artif. Intell..

[36]  Saeid Homayouni,et al.  Object-based classification of hyperspectral data using Random Forest algorithm , 2018, Geo spatial Inf. Sci..

[37]  Hamid Parvin,et al.  Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic environments , 2018, Applied Intelligence.

[38]  Mohsen Moradi,et al.  CMCABC: Clustering and Memory-Based Chaotic Artificial Bee Colony Dynamic Optimization Algorithm , 2018, Int. J. Inf. Technol. Decis. Mak..

[39]  Wei Tang,et al.  Clusterer ensemble , 2006, Knowl. Based Syst..

[40]  Hamid Parvin,et al.  To improve the quality of cluster ensembles by selecting a subset of base clusters , 2014, J. Exp. Theor. Artif. Intell..

[41]  William F. Punch,et al.  Effects of resampling method and adaptation on clustering ensemble efficacy , 2011, Artificial Intelligence Review.