A Modeling Framework for NBTI Degradation Under Dynamic Voltage and Frequency Scaling

A modeling framework is proposed to predict the degradation and recovery of threshold voltage shift (ΔV<sub>T</sub>) due to negative bias temperature instability. Double interface reaction- diffusion model with transient trap occupancy model is used to predict the generation and recovery of interface traps (ΔV<sub>IT</sub>). Empirical stretched exponential equations are used to capture hole trapping and detrapping in preexisting traps (ΔV<sub>HT</sub>). The framework consists of uncoupled contributions from ΔV<sub>IT</sub> and ΔV<sub>HT</sub> and is capable of accurately predicting the ultrafast measured ΔV<sub>T</sub> during dc, arbitrary multicycle dc, ac, and mixed-mode dc-ac stress. It can predict pulse duty cycle and frequency dependence of ac degradation and also dynamic voltage and frequency scaling waveforms encountered in actual circuits.

[1]  B. Kaczer,et al.  An energy-level perspective of bias temperature instability , 2008, 2008 IEEE International Reliability Physics Symposium.

[2]  S. Deora,et al.  A critical re-evaluation of the usefulness of R-D framework in predicting NBTI stress and recovery , 2011, 2011 International Reliability Physics Symposium.

[3]  M.A. Alam,et al.  Investigation and modeling of interface and bulk trap generation during negative bias temperature instability of p-MOSFETs , 2004, IEEE Transactions on Electron Devices.

[4]  S. Mahapatra,et al.  A comprehensive DC/AC model for ultra-fast NBTI in deep EOT scaled HKMG p-MOSFETs , 2014, 2014 IEEE International Reliability Physics Symposium.

[5]  Souvik Mahapatra,et al.  An Experimental Perspective of Trap Generation Under BTI Stress , 2015, IEEE Transactions on Electron Devices.

[6]  F. Nouri,et al.  On the dispersive versus arrhenius temperature activation of nbti time evolution in plasma nitrided gate oxides: measurements, theory, and implications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[7]  Naoto Horiguchi,et al.  Time dependent variability in RMG-HKMG FinFETs: Impact of extraction scheme on stochastic NBTI , 2015, 2015 IEEE International Reliability Physics Symposium.

[8]  T. Grasser,et al.  Understanding and modeling AC BTI , 2011, 2011 International Reliability Physics Symposium.

[9]  S. Mahapatra,et al.  A consistent physical framework for N and P BTI in HKMG MOSFETs , 2012, 2012 IEEE International Reliability Physics Symposium (IRPS).

[10]  S. Mukhopadhyay,et al.  A comprehensive AC / DC NBTI model: Stress, recovery, frequency, duty cycle and process dependence , 2013, 2013 IEEE International Reliability Physics Symposium (IRPS).

[11]  R. Tsuchiya,et al.  Negative bias temperature instability of pMOSFETs with ultra-thin SiON gate dielectrics , 2003, 2003 IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual..

[12]  Hoi-Jun Yoo,et al.  Dynamic Voltage and Frequency Scaling (DVFS) scheme for multi-domains power management , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[13]  A. Rahman,et al.  Intrinsic transistor reliability improvements from 22nm tri-gate technology , 2013, 2013 IEEE International Reliability Physics Symposium (IRPS).

[14]  S. Mahapatra,et al.  Recent Issues in Negative-Bias Temperature Instability: Initial Degradation, Field Dependence of Interface Trap Generation, Hole Trapping Effects, and Relaxation , 2007, IEEE Transactions on Electron Devices.

[15]  S. John,et al.  NBTI impact on transistor and circuit: models, mechanisms and scaling effects [MOSFETs] , 2003, IEEE International Electron Devices Meeting 2003.

[16]  S. Mahapatra,et al.  Modeling of DC and AC NBTI Degradation and Recovery for SiON and HKMG MOSFETs , 2016 .

[17]  Yu Cao,et al.  Compact Modeling of Statistical BTI Under Trapping/Detrapping , 2013, IEEE Transactions on Electron Devices.

[18]  A. Brand,et al.  HKMG process impact on N, P BTI: Role of thermal IL scaling, IL/HK integration and post HK nitridation , 2013, 2013 IEEE International Reliability Physics Symposium (IRPS).

[19]  S. Mukhopadhyay,et al.  A comprehensive modeling framework for gate stack process dependence of DC and AC NBTI in SiON and HKMG p-MOSFETs , 2014, Microelectron. Reliab..

[20]  Jae-Joon Kim,et al.  Bias Temperature Instability model for digital circuits - predicting instantaneous FET response , 2011, 2011 International Reliability Physics Symposium.

[21]  N. Collaert,et al.  Disorder-controlled-kinetics model for negative bias temperature instability and its experimental verification , 2005, 2005 IEEE International Reliability Physics Symposium, 2005. Proceedings. 43rd Annual..

[22]  B. Kaczer,et al.  On the frequency dependence of the bias temperature instability , 2012, 2012 IEEE International Reliability Physics Symposium (IRPS).

[23]  M. Alam,et al.  A Comparative Study of Different Physics-Based NBTI Models , 2013, IEEE Transactions on Electron Devices.

[24]  P. Nicollian,et al.  Material dependence of hydrogen diffusion: implications for NBTI degradation , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[25]  Philippe Raynaud,et al.  Compact model for parametric instability under arbitrary stress waveform , 2015 .

[26]  S. Mahapatra,et al.  Universality of NBTI - From devices to circuits and products , 2014, 2014 IEEE International Reliability Physics Symposium.

[27]  Souvik Mahapatra,et al.  Combined trap generation and transient trap occupancy model for time evolution of NBTI during DC multi-cycle and AC stress , 2015, 2015 IEEE International Reliability Physics Symposium.

[28]  K. Ahmed,et al.  On the Physical Mechanism of NBTI in Silicon Oxynitride p-MOSFETs: Can Differences in Insulator Processing Conditions Resolve the Interface Trap Generation versus Hole Trapping Controversy? , 2007, 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual.