Nonlinear sensitivity operator and inverse thin-slab propagator for tomographic waveform inversion

Summary We derived the nonlinear sensitivity operator and the related inverse thin-slab propagator (ITSP) for nonlinear tomographic waveform inversion based on the theory of nonlinear partial derivative operator. The inverse propagator is based on a renormalization procedure to the forward and inverse T-matrix series. The inverse thin-slab propagator solves the divergence problem of the inverse series for strong perturbations by stepwise partial summation (renormalization). Numerical tests showed that the inverse Born T-series starts to diverge at 20% perturbation (for the given model), while the inverse thinslab propagator has no convergence problem for up to 50% perturbation. This convergence improvement has potential applications to the iterative procedure of waveform inversion.

[1]  R. Wu,et al.  Wave Propagation, Scattering and Imaging Using Dual-domain One-way and One-return Propagators , 2003 .

[2]  Bjørn Ursin,et al.  Nonlinear Seismic Waveform Inversion Using a Born Iterative T-Matrix Method , 2012 .

[3]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[4]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[5]  Arthur B. Weglein,et al.  Inverse scattering series and seismic exploration , 2003 .

[6]  D. A. de Wolf Correction to "Renormalization of EM fields in application to large-angle scattering from randomly continuous media and sparse particle distributions" , 1985 .

[7]  H. Moses,et al.  Calculation of the Scattering Potential from Reflection Coefficients , 1956 .

[8]  Ru-Shan Wu,et al.  Non-linear partial derivative and its De Wolf approximation for non-linear seismic inversion , 2014 .

[9]  Vadim A. Markel,et al.  Inverse problem in optical diffusion tomography. IV. Nonlinear inversion formulas. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  L. Ye,et al.  Nonlinear partial Functional Derivative and Nonlinear LS Seismic Inversion , 2013 .

[11]  Arthur B. Weglein,et al.  An inverse-scattering series method for attenuating multiples in seismic reflection data , 1997 .

[12]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[13]  Ru-Shan Wu,et al.  Nonlinear Fréchet Derivative and its De Wolf Approximation , 2012 .

[14]  Birsen Yazici,et al.  Born expansion and Fréchet derivatives in nonlinear Diffuse Optical Tomography , 2010, Comput. Math. Appl..

[15]  R. Wu,et al.  Chapter 2. One-Return Propagators and the Applications in Modeling and Imaging , 2012 .

[16]  Morten Jakobsen,et al.  T-matrix approach to seismic forward modelling in the acoustic approximation , 2012, Studia Geophysica et Geodaetica.

[17]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[18]  Reese T. Prosser,et al.  Formal solutions of inverse scattering problems. IV. Error estimates , 1982 .

[19]  Reese T. Prosser,et al.  Formal solutions of inverse scattering problems. III. , 1969 .